This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthocomplement of any set is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cssss.v | |- V = ( Base ` W ) |
|
| cssss.c | |- C = ( ClSubSp ` W ) |
||
| ocvcss.o | |- ._|_ = ( ocv ` W ) |
||
| Assertion | ocvcss | |- ( ( W e. PreHil /\ S C_ V ) -> ( ._|_ ` S ) e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cssss.v | |- V = ( Base ` W ) |
|
| 2 | cssss.c | |- C = ( ClSubSp ` W ) |
|
| 3 | ocvcss.o | |- ._|_ = ( ocv ` W ) |
|
| 4 | 1 3 | ocvocv | |- ( ( W e. PreHil /\ S C_ V ) -> S C_ ( ._|_ ` ( ._|_ ` S ) ) ) |
| 5 | 3 | ocv2ss | |- ( S C_ ( ._|_ ` ( ._|_ ` S ) ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` S ) ) ) C_ ( ._|_ ` S ) ) |
| 6 | 4 5 | syl | |- ( ( W e. PreHil /\ S C_ V ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` S ) ) ) C_ ( ._|_ ` S ) ) |
| 7 | 1 3 | ocvss | |- ( ._|_ ` S ) C_ V |
| 8 | 7 | a1i | |- ( S C_ V -> ( ._|_ ` S ) C_ V ) |
| 9 | 1 2 3 | iscss2 | |- ( ( W e. PreHil /\ ( ._|_ ` S ) C_ V ) -> ( ( ._|_ ` S ) e. C <-> ( ._|_ ` ( ._|_ ` ( ._|_ ` S ) ) ) C_ ( ._|_ ` S ) ) ) |
| 10 | 8 9 | sylan2 | |- ( ( W e. PreHil /\ S C_ V ) -> ( ( ._|_ ` S ) e. C <-> ( ._|_ ` ( ._|_ ` ( ._|_ ` S ) ) ) C_ ( ._|_ ` S ) ) ) |
| 11 | 6 10 | mpbird | |- ( ( W e. PreHil /\ S C_ V ) -> ( ._|_ ` S ) e. C ) |