This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Moore closure corresponding to the system of closed subspaces is the double orthocomplement operation. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mrccss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| mrccss.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | ||
| mrccss.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | ||
| mrccss.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | ||
| Assertion | mrccss | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐹 ‘ 𝑆 ) = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrccss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | mrccss.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 3 | mrccss.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| 4 | mrccss.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| 5 | 1 3 | cssmre | ⊢ ( 𝑊 ∈ PreHil → 𝐶 ∈ ( Moore ‘ 𝑉 ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝐶 ∈ ( Moore ‘ 𝑉 ) ) |
| 7 | 1 2 | ocvocv | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| 8 | 1 2 | ocvss | ⊢ ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 |
| 9 | 8 | a1i | ⊢ ( 𝑆 ⊆ 𝑉 → ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 ) |
| 10 | 1 3 2 | ocvcss | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∈ 𝐶 ) |
| 11 | 9 10 | sylan2 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∈ 𝐶 ) |
| 12 | 4 | mrcsscl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑉 ) ∧ 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∈ 𝐶 ) → ( 𝐹 ‘ 𝑆 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| 13 | 6 7 11 12 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐹 ‘ 𝑆 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| 14 | 4 | mrcssid | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑉 ) ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( 𝐹 ‘ 𝑆 ) ) |
| 15 | 5 14 | sylan | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( 𝐹 ‘ 𝑆 ) ) |
| 16 | 2 | ocv2ss | ⊢ ( 𝑆 ⊆ ( 𝐹 ‘ 𝑆 ) → ( ⊥ ‘ ( 𝐹 ‘ 𝑆 ) ) ⊆ ( ⊥ ‘ 𝑆 ) ) |
| 17 | 2 | ocv2ss | ⊢ ( ( ⊥ ‘ ( 𝐹 ‘ 𝑆 ) ) ⊆ ( ⊥ ‘ 𝑆 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐹 ‘ 𝑆 ) ) ) ) |
| 18 | 15 16 17 | 3syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐹 ‘ 𝑆 ) ) ) ) |
| 19 | 4 | mrccl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑉 ) ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐹 ‘ 𝑆 ) ∈ 𝐶 ) |
| 20 | 5 19 | sylan | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐹 ‘ 𝑆 ) ∈ 𝐶 ) |
| 21 | 2 3 | cssi | ⊢ ( ( 𝐹 ‘ 𝑆 ) ∈ 𝐶 → ( 𝐹 ‘ 𝑆 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐹 ‘ 𝑆 ) ) ) ) |
| 22 | 20 21 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐹 ‘ 𝑆 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐹 ‘ 𝑆 ) ) ) ) |
| 23 | 18 22 | sseqtrrd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ ( 𝐹 ‘ 𝑆 ) ) |
| 24 | 13 23 | eqssd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐹 ‘ 𝑆 ) = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |