This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping involving coefficients of polynomials is finitely supported. (Contributed by AV, 12-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mptcoe1fsupp.p | |- P = ( Poly1 ` R ) |
|
| mptcoe1fsupp.b | |- B = ( Base ` P ) |
||
| mptcoe1fsupp.0 | |- .0. = ( 0g ` R ) |
||
| Assertion | mptcoe1fsupp | |- ( ( R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( ( coe1 ` M ) ` k ) ) finSupp .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptcoe1fsupp.p | |- P = ( Poly1 ` R ) |
|
| 2 | mptcoe1fsupp.b | |- B = ( Base ` P ) |
|
| 3 | mptcoe1fsupp.0 | |- .0. = ( 0g ` R ) |
|
| 4 | 3 | fvexi | |- .0. e. _V |
| 5 | 4 | a1i | |- ( ( R e. Ring /\ M e. B ) -> .0. e. _V ) |
| 6 | eqid | |- ( coe1 ` M ) = ( coe1 ` M ) |
|
| 7 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 8 | 6 2 1 7 | coe1fvalcl | |- ( ( M e. B /\ k e. NN0 ) -> ( ( coe1 ` M ) ` k ) e. ( Base ` R ) ) |
| 9 | 8 | adantll | |- ( ( ( R e. Ring /\ M e. B ) /\ k e. NN0 ) -> ( ( coe1 ` M ) ` k ) e. ( Base ` R ) ) |
| 10 | simpr | |- ( ( R e. Ring /\ M e. B ) -> M e. B ) |
|
| 11 | 6 2 1 3 7 | coe1fsupp | |- ( M e. B -> ( coe1 ` M ) e. { c e. ( ( Base ` R ) ^m NN0 ) | c finSupp .0. } ) |
| 12 | elrabi | |- ( ( coe1 ` M ) e. { c e. ( ( Base ` R ) ^m NN0 ) | c finSupp .0. } -> ( coe1 ` M ) e. ( ( Base ` R ) ^m NN0 ) ) |
|
| 13 | 10 11 12 | 3syl | |- ( ( R e. Ring /\ M e. B ) -> ( coe1 ` M ) e. ( ( Base ` R ) ^m NN0 ) ) |
| 14 | 13 4 | jctir | |- ( ( R e. Ring /\ M e. B ) -> ( ( coe1 ` M ) e. ( ( Base ` R ) ^m NN0 ) /\ .0. e. _V ) ) |
| 15 | 6 2 1 3 | coe1sfi | |- ( M e. B -> ( coe1 ` M ) finSupp .0. ) |
| 16 | 15 | adantl | |- ( ( R e. Ring /\ M e. B ) -> ( coe1 ` M ) finSupp .0. ) |
| 17 | fsuppmapnn0ub | |- ( ( ( coe1 ` M ) e. ( ( Base ` R ) ^m NN0 ) /\ .0. e. _V ) -> ( ( coe1 ` M ) finSupp .0. -> E. s e. NN0 A. x e. NN0 ( s < x -> ( ( coe1 ` M ) ` x ) = .0. ) ) ) |
|
| 18 | 14 16 17 | sylc | |- ( ( R e. Ring /\ M e. B ) -> E. s e. NN0 A. x e. NN0 ( s < x -> ( ( coe1 ` M ) ` x ) = .0. ) ) |
| 19 | csbfv | |- [_ x / k ]_ ( ( coe1 ` M ) ` k ) = ( ( coe1 ` M ) ` x ) |
|
| 20 | simpr | |- ( ( ( ( ( ( R e. Ring /\ M e. B ) /\ s e. NN0 ) /\ x e. NN0 ) /\ s < x ) /\ ( ( coe1 ` M ) ` x ) = .0. ) -> ( ( coe1 ` M ) ` x ) = .0. ) |
|
| 21 | 19 20 | eqtrid | |- ( ( ( ( ( ( R e. Ring /\ M e. B ) /\ s e. NN0 ) /\ x e. NN0 ) /\ s < x ) /\ ( ( coe1 ` M ) ` x ) = .0. ) -> [_ x / k ]_ ( ( coe1 ` M ) ` k ) = .0. ) |
| 22 | 21 | exp31 | |- ( ( ( ( R e. Ring /\ M e. B ) /\ s e. NN0 ) /\ x e. NN0 ) -> ( s < x -> ( ( ( coe1 ` M ) ` x ) = .0. -> [_ x / k ]_ ( ( coe1 ` M ) ` k ) = .0. ) ) ) |
| 23 | 22 | a2d | |- ( ( ( ( R e. Ring /\ M e. B ) /\ s e. NN0 ) /\ x e. NN0 ) -> ( ( s < x -> ( ( coe1 ` M ) ` x ) = .0. ) -> ( s < x -> [_ x / k ]_ ( ( coe1 ` M ) ` k ) = .0. ) ) ) |
| 24 | 23 | ralimdva | |- ( ( ( R e. Ring /\ M e. B ) /\ s e. NN0 ) -> ( A. x e. NN0 ( s < x -> ( ( coe1 ` M ) ` x ) = .0. ) -> A. x e. NN0 ( s < x -> [_ x / k ]_ ( ( coe1 ` M ) ` k ) = .0. ) ) ) |
| 25 | 24 | reximdva | |- ( ( R e. Ring /\ M e. B ) -> ( E. s e. NN0 A. x e. NN0 ( s < x -> ( ( coe1 ` M ) ` x ) = .0. ) -> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ ( ( coe1 ` M ) ` k ) = .0. ) ) ) |
| 26 | 18 25 | mpd | |- ( ( R e. Ring /\ M e. B ) -> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ ( ( coe1 ` M ) ` k ) = .0. ) ) |
| 27 | 5 9 26 | mptnn0fsupp | |- ( ( R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( ( coe1 ` M ) ` k ) ) finSupp .0. ) |