This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping involving coefficients of polynomials is finitely supported. (Contributed by AV, 12-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mptcoe1fsupp.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| mptcoe1fsupp.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| mptcoe1fsupp.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | mptcoe1fsupp | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝑘 ) ) finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptcoe1fsupp.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | mptcoe1fsupp.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | mptcoe1fsupp.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | 3 | fvexi | ⊢ 0 ∈ V |
| 5 | 4 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 0 ∈ V ) |
| 6 | eqid | ⊢ ( coe1 ‘ 𝑀 ) = ( coe1 ‘ 𝑀 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 8 | 6 2 1 7 | coe1fvalcl | ⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑀 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
| 9 | 8 | adantll | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑀 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
| 10 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑀 ∈ 𝐵 ) | |
| 11 | 6 2 1 3 7 | coe1fsupp | ⊢ ( 𝑀 ∈ 𝐵 → ( coe1 ‘ 𝑀 ) ∈ { 𝑐 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑐 finSupp 0 } ) |
| 12 | elrabi | ⊢ ( ( coe1 ‘ 𝑀 ) ∈ { 𝑐 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑐 finSupp 0 } → ( coe1 ‘ 𝑀 ) ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ) | |
| 13 | 10 11 12 | 3syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( coe1 ‘ 𝑀 ) ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ) |
| 14 | 13 4 | jctir | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ 𝑀 ) ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∧ 0 ∈ V ) ) |
| 15 | 6 2 1 3 | coe1sfi | ⊢ ( 𝑀 ∈ 𝐵 → ( coe1 ‘ 𝑀 ) finSupp 0 ) |
| 16 | 15 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( coe1 ‘ 𝑀 ) finSupp 0 ) |
| 17 | fsuppmapnn0ub | ⊢ ( ( ( coe1 ‘ 𝑀 ) ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∧ 0 ∈ V ) → ( ( coe1 ‘ 𝑀 ) finSupp 0 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑀 ) ‘ 𝑥 ) = 0 ) ) ) | |
| 18 | 14 16 17 | sylc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑀 ) ‘ 𝑥 ) = 0 ) ) |
| 19 | csbfv | ⊢ ⦋ 𝑥 / 𝑘 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝑘 ) = ( ( coe1 ‘ 𝑀 ) ‘ 𝑥 ) | |
| 20 | simpr | ⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑠 < 𝑥 ) ∧ ( ( coe1 ‘ 𝑀 ) ‘ 𝑥 ) = 0 ) → ( ( coe1 ‘ 𝑀 ) ‘ 𝑥 ) = 0 ) | |
| 21 | 19 20 | eqtrid | ⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑠 < 𝑥 ) ∧ ( ( coe1 ‘ 𝑀 ) ‘ 𝑥 ) = 0 ) → ⦋ 𝑥 / 𝑘 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝑘 ) = 0 ) |
| 22 | 21 | exp31 | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑠 < 𝑥 → ( ( ( coe1 ‘ 𝑀 ) ‘ 𝑥 ) = 0 → ⦋ 𝑥 / 𝑘 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝑘 ) = 0 ) ) ) |
| 23 | 22 | a2d | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑀 ) ‘ 𝑥 ) = 0 ) → ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝑘 ) = 0 ) ) ) |
| 24 | 23 | ralimdva | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑀 ) ‘ 𝑥 ) = 0 ) → ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝑘 ) = 0 ) ) ) |
| 25 | 24 | reximdva | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑀 ) ‘ 𝑥 ) = 0 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝑘 ) = 0 ) ) ) |
| 26 | 18 25 | mpd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝑘 ) = 0 ) ) |
| 27 | 5 9 26 | mptnn0fsupp | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝑘 ) ) finSupp 0 ) |