This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 5-Oct-2019) (Revised by AV, 23-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mptnn0fsupp.0 | |- ( ph -> .0. e. V ) |
|
| mptnn0fsupp.c | |- ( ( ph /\ k e. NN0 ) -> C e. B ) |
||
| mptnn0fsupp.s | |- ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) |
||
| Assertion | mptnn0fsupp | |- ( ph -> ( k e. NN0 |-> C ) finSupp .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptnn0fsupp.0 | |- ( ph -> .0. e. V ) |
|
| 2 | mptnn0fsupp.c | |- ( ( ph /\ k e. NN0 ) -> C e. B ) |
|
| 3 | mptnn0fsupp.s | |- ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) |
|
| 4 | 2 | ralrimiva | |- ( ph -> A. k e. NN0 C e. B ) |
| 5 | eqid | |- ( k e. NN0 |-> C ) = ( k e. NN0 |-> C ) |
|
| 6 | 5 | fnmpt | |- ( A. k e. NN0 C e. B -> ( k e. NN0 |-> C ) Fn NN0 ) |
| 7 | 4 6 | syl | |- ( ph -> ( k e. NN0 |-> C ) Fn NN0 ) |
| 8 | nn0ex | |- NN0 e. _V |
|
| 9 | 8 | a1i | |- ( ph -> NN0 e. _V ) |
| 10 | 1 | elexd | |- ( ph -> .0. e. _V ) |
| 11 | suppvalfn | |- ( ( ( k e. NN0 |-> C ) Fn NN0 /\ NN0 e. _V /\ .0. e. _V ) -> ( ( k e. NN0 |-> C ) supp .0. ) = { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } ) |
|
| 12 | 7 9 10 11 | syl3anc | |- ( ph -> ( ( k e. NN0 |-> C ) supp .0. ) = { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } ) |
| 13 | nne | |- ( -. ( ( k e. NN0 |-> C ) ` x ) =/= .0. <-> ( ( k e. NN0 |-> C ) ` x ) = .0. ) |
|
| 14 | simpr | |- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> x e. NN0 ) |
|
| 15 | 4 | ad2antrr | |- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> A. k e. NN0 C e. B ) |
| 16 | rspcsbela | |- ( ( x e. NN0 /\ A. k e. NN0 C e. B ) -> [_ x / k ]_ C e. B ) |
|
| 17 | 14 15 16 | syl2anc | |- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> [_ x / k ]_ C e. B ) |
| 18 | 5 | fvmpts | |- ( ( x e. NN0 /\ [_ x / k ]_ C e. B ) -> ( ( k e. NN0 |-> C ) ` x ) = [_ x / k ]_ C ) |
| 19 | 14 17 18 | syl2anc | |- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( ( k e. NN0 |-> C ) ` x ) = [_ x / k ]_ C ) |
| 20 | 19 | eqeq1d | |- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( ( ( k e. NN0 |-> C ) ` x ) = .0. <-> [_ x / k ]_ C = .0. ) ) |
| 21 | 13 20 | bitrid | |- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( -. ( ( k e. NN0 |-> C ) ` x ) =/= .0. <-> [_ x / k ]_ C = .0. ) ) |
| 22 | 21 | imbi2d | |- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( ( s < x -> -. ( ( k e. NN0 |-> C ) ` x ) =/= .0. ) <-> ( s < x -> [_ x / k ]_ C = .0. ) ) ) |
| 23 | 22 | ralbidva | |- ( ( ph /\ s e. NN0 ) -> ( A. x e. NN0 ( s < x -> -. ( ( k e. NN0 |-> C ) ` x ) =/= .0. ) <-> A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) ) |
| 24 | 23 | rexbidva | |- ( ph -> ( E. s e. NN0 A. x e. NN0 ( s < x -> -. ( ( k e. NN0 |-> C ) ` x ) =/= .0. ) <-> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) ) |
| 25 | 3 24 | mpbird | |- ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> -. ( ( k e. NN0 |-> C ) ` x ) =/= .0. ) ) |
| 26 | rabssnn0fi | |- ( { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } e. Fin <-> E. s e. NN0 A. x e. NN0 ( s < x -> -. ( ( k e. NN0 |-> C ) ` x ) =/= .0. ) ) |
|
| 27 | 25 26 | sylibr | |- ( ph -> { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } e. Fin ) |
| 28 | 12 27 | eqeltrd | |- ( ph -> ( ( k e. NN0 |-> C ) supp .0. ) e. Fin ) |
| 29 | funmpt | |- Fun ( k e. NN0 |-> C ) |
|
| 30 | 8 | mptex | |- ( k e. NN0 |-> C ) e. _V |
| 31 | funisfsupp | |- ( ( Fun ( k e. NN0 |-> C ) /\ ( k e. NN0 |-> C ) e. _V /\ .0. e. _V ) -> ( ( k e. NN0 |-> C ) finSupp .0. <-> ( ( k e. NN0 |-> C ) supp .0. ) e. Fin ) ) |
|
| 32 | 29 30 10 31 | mp3an12i | |- ( ph -> ( ( k e. NN0 |-> C ) finSupp .0. <-> ( ( k e. NN0 |-> C ) supp .0. ) e. Fin ) ) |
| 33 | 28 32 | mpbird | |- ( ph -> ( k e. NN0 |-> C ) finSupp .0. ) |