This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The coefficient vector of a univariate polynomial is a finitely supported mapping from the nonnegative integers to the elements of the coefficient class/ring for the polynomial. (Contributed by AV, 3-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1sfi.a | |- A = ( coe1 ` F ) |
|
| coe1sfi.b | |- B = ( Base ` P ) |
||
| coe1sfi.p | |- P = ( Poly1 ` R ) |
||
| coe1sfi.z | |- .0. = ( 0g ` R ) |
||
| coe1fvalcl.k | |- K = ( Base ` R ) |
||
| Assertion | coe1fsupp | |- ( F e. B -> A e. { g e. ( K ^m NN0 ) | g finSupp .0. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1sfi.a | |- A = ( coe1 ` F ) |
|
| 2 | coe1sfi.b | |- B = ( Base ` P ) |
|
| 3 | coe1sfi.p | |- P = ( Poly1 ` R ) |
|
| 4 | coe1sfi.z | |- .0. = ( 0g ` R ) |
|
| 5 | coe1fvalcl.k | |- K = ( Base ` R ) |
|
| 6 | breq1 | |- ( g = A -> ( g finSupp .0. <-> A finSupp .0. ) ) |
|
| 7 | 1 2 3 5 | coe1f | |- ( F e. B -> A : NN0 --> K ) |
| 8 | 5 | fvexi | |- K e. _V |
| 9 | nn0ex | |- NN0 e. _V |
|
| 10 | 8 9 | pm3.2i | |- ( K e. _V /\ NN0 e. _V ) |
| 11 | elmapg | |- ( ( K e. _V /\ NN0 e. _V ) -> ( A e. ( K ^m NN0 ) <-> A : NN0 --> K ) ) |
|
| 12 | 10 11 | mp1i | |- ( F e. B -> ( A e. ( K ^m NN0 ) <-> A : NN0 --> K ) ) |
| 13 | 7 12 | mpbird | |- ( F e. B -> A e. ( K ^m NN0 ) ) |
| 14 | 1 2 3 4 | coe1sfi | |- ( F e. B -> A finSupp .0. ) |
| 15 | 6 13 14 | elrabd | |- ( F e. B -> A e. { g e. ( K ^m NN0 ) | g finSupp .0. } ) |