This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absorption law for modulo. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modaddabs | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( A mod C ) + ( B mod C ) ) mod C ) = ( ( A + B ) mod C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modcl | |- ( ( A e. RR /\ C e. RR+ ) -> ( A mod C ) e. RR ) |
|
| 2 | 1 | recnd | |- ( ( A e. RR /\ C e. RR+ ) -> ( A mod C ) e. CC ) |
| 3 | 2 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( A mod C ) e. CC ) |
| 4 | modcl | |- ( ( B e. RR /\ C e. RR+ ) -> ( B mod C ) e. RR ) |
|
| 5 | 4 | recnd | |- ( ( B e. RR /\ C e. RR+ ) -> ( B mod C ) e. CC ) |
| 6 | 5 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( B mod C ) e. CC ) |
| 7 | 3 6 | addcomd | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) + ( B mod C ) ) = ( ( B mod C ) + ( A mod C ) ) ) |
| 8 | 7 | oveq1d | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( A mod C ) + ( B mod C ) ) mod C ) = ( ( ( B mod C ) + ( A mod C ) ) mod C ) ) |
| 9 | simpl | |- ( ( B e. RR /\ C e. RR+ ) -> B e. RR ) |
|
| 10 | 4 9 | jca | |- ( ( B e. RR /\ C e. RR+ ) -> ( ( B mod C ) e. RR /\ B e. RR ) ) |
| 11 | 10 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( B mod C ) e. RR /\ B e. RR ) ) |
| 12 | simpr | |- ( ( A e. RR /\ C e. RR+ ) -> C e. RR+ ) |
|
| 13 | 1 12 | jca | |- ( ( A e. RR /\ C e. RR+ ) -> ( ( A mod C ) e. RR /\ C e. RR+ ) ) |
| 14 | 13 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) e. RR /\ C e. RR+ ) ) |
| 15 | modabs2 | |- ( ( B e. RR /\ C e. RR+ ) -> ( ( B mod C ) mod C ) = ( B mod C ) ) |
|
| 16 | 15 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( B mod C ) mod C ) = ( B mod C ) ) |
| 17 | modadd1 | |- ( ( ( ( B mod C ) e. RR /\ B e. RR ) /\ ( ( A mod C ) e. RR /\ C e. RR+ ) /\ ( ( B mod C ) mod C ) = ( B mod C ) ) -> ( ( ( B mod C ) + ( A mod C ) ) mod C ) = ( ( B + ( A mod C ) ) mod C ) ) |
|
| 18 | 11 14 16 17 | syl3anc | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( B mod C ) + ( A mod C ) ) mod C ) = ( ( B + ( A mod C ) ) mod C ) ) |
| 19 | recn | |- ( B e. RR -> B e. CC ) |
|
| 20 | 19 | 3ad2ant2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> B e. CC ) |
| 21 | 3 20 | addcomd | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) + B ) = ( B + ( A mod C ) ) ) |
| 22 | 21 | oveq1d | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( A mod C ) + B ) mod C ) = ( ( B + ( A mod C ) ) mod C ) ) |
| 23 | 18 22 | eqtr4d | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( B mod C ) + ( A mod C ) ) mod C ) = ( ( ( A mod C ) + B ) mod C ) ) |
| 24 | simpl | |- ( ( A e. RR /\ C e. RR+ ) -> A e. RR ) |
|
| 25 | 1 24 | jca | |- ( ( A e. RR /\ C e. RR+ ) -> ( ( A mod C ) e. RR /\ A e. RR ) ) |
| 26 | 25 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) e. RR /\ A e. RR ) ) |
| 27 | 3simpc | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( B e. RR /\ C e. RR+ ) ) |
|
| 28 | modabs2 | |- ( ( A e. RR /\ C e. RR+ ) -> ( ( A mod C ) mod C ) = ( A mod C ) ) |
|
| 29 | 28 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) mod C ) = ( A mod C ) ) |
| 30 | modadd1 | |- ( ( ( ( A mod C ) e. RR /\ A e. RR ) /\ ( B e. RR /\ C e. RR+ ) /\ ( ( A mod C ) mod C ) = ( A mod C ) ) -> ( ( ( A mod C ) + B ) mod C ) = ( ( A + B ) mod C ) ) |
|
| 31 | 26 27 29 30 | syl3anc | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( A mod C ) + B ) mod C ) = ( ( A + B ) mod C ) ) |
| 32 | 8 23 31 | 3eqtrd | |- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( A mod C ) + ( B mod C ) ) mod C ) = ( ( A + B ) mod C ) ) |