This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absorption law for modulo. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modaddabs | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( ( 𝐴 mod 𝐶 ) + ( 𝐵 mod 𝐶 ) ) mod 𝐶 ) = ( ( 𝐴 + 𝐵 ) mod 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 mod 𝐶 ) ∈ ℝ ) | |
| 2 | 1 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 mod 𝐶 ) ∈ ℂ ) |
| 3 | 2 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 mod 𝐶 ) ∈ ℂ ) |
| 4 | modcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( 𝐵 mod 𝐶 ) ∈ ℝ ) | |
| 5 | 4 | recnd | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( 𝐵 mod 𝐶 ) ∈ ℂ ) |
| 6 | 5 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( 𝐵 mod 𝐶 ) ∈ ℂ ) |
| 7 | 3 6 | addcomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐶 ) + ( 𝐵 mod 𝐶 ) ) = ( ( 𝐵 mod 𝐶 ) + ( 𝐴 mod 𝐶 ) ) ) |
| 8 | 7 | oveq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( ( 𝐴 mod 𝐶 ) + ( 𝐵 mod 𝐶 ) ) mod 𝐶 ) = ( ( ( 𝐵 mod 𝐶 ) + ( 𝐴 mod 𝐶 ) ) mod 𝐶 ) ) |
| 9 | simpl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) | |
| 10 | 4 9 | jca | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐵 mod 𝐶 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 11 | 10 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐵 mod 𝐶 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 12 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℝ+ ) | |
| 13 | 1 12 | jca | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐶 ) ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) ) |
| 14 | 13 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐶 ) ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) ) |
| 15 | modabs2 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐵 mod 𝐶 ) mod 𝐶 ) = ( 𝐵 mod 𝐶 ) ) | |
| 16 | 15 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐵 mod 𝐶 ) mod 𝐶 ) = ( 𝐵 mod 𝐶 ) ) |
| 17 | modadd1 | ⊢ ( ( ( ( 𝐵 mod 𝐶 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐴 mod 𝐶 ) ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) ∧ ( ( 𝐵 mod 𝐶 ) mod 𝐶 ) = ( 𝐵 mod 𝐶 ) ) → ( ( ( 𝐵 mod 𝐶 ) + ( 𝐴 mod 𝐶 ) ) mod 𝐶 ) = ( ( 𝐵 + ( 𝐴 mod 𝐶 ) ) mod 𝐶 ) ) | |
| 18 | 11 14 16 17 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( ( 𝐵 mod 𝐶 ) + ( 𝐴 mod 𝐶 ) ) mod 𝐶 ) = ( ( 𝐵 + ( 𝐴 mod 𝐶 ) ) mod 𝐶 ) ) |
| 19 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 20 | 19 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → 𝐵 ∈ ℂ ) |
| 21 | 3 20 | addcomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐶 ) + 𝐵 ) = ( 𝐵 + ( 𝐴 mod 𝐶 ) ) ) |
| 22 | 21 | oveq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( ( 𝐴 mod 𝐶 ) + 𝐵 ) mod 𝐶 ) = ( ( 𝐵 + ( 𝐴 mod 𝐶 ) ) mod 𝐶 ) ) |
| 23 | 18 22 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( ( 𝐵 mod 𝐶 ) + ( 𝐴 mod 𝐶 ) ) mod 𝐶 ) = ( ( ( 𝐴 mod 𝐶 ) + 𝐵 ) mod 𝐶 ) ) |
| 24 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) | |
| 25 | 1 24 | jca | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐶 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) ) |
| 26 | 25 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐶 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) ) |
| 27 | 3simpc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) ) | |
| 28 | modabs2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐶 ) mod 𝐶 ) = ( 𝐴 mod 𝐶 ) ) | |
| 29 | 28 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐶 ) mod 𝐶 ) = ( 𝐴 mod 𝐶 ) ) |
| 30 | modadd1 | ⊢ ( ( ( ( 𝐴 mod 𝐶 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) ∧ ( ( 𝐴 mod 𝐶 ) mod 𝐶 ) = ( 𝐴 mod 𝐶 ) ) → ( ( ( 𝐴 mod 𝐶 ) + 𝐵 ) mod 𝐶 ) = ( ( 𝐴 + 𝐵 ) mod 𝐶 ) ) | |
| 31 | 26 27 29 30 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( ( 𝐴 mod 𝐶 ) + 𝐵 ) mod 𝐶 ) = ( ( 𝐴 + 𝐵 ) mod 𝐶 ) ) |
| 32 | 8 23 31 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+ ) → ( ( ( 𝐴 mod 𝐶 ) + ( 𝐵 mod 𝐶 ) ) mod 𝐶 ) = ( ( 𝐴 + 𝐵 ) mod 𝐶 ) ) |