This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a real number modulo a positive real number equals the positive real number decreased by 1, the real number increased by 1 modulo the positive real number equals 0. (Contributed by AV, 2-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modm1p1mod0 | |- ( ( A e. RR /\ M e. RR+ ) -> ( ( A mod M ) = ( M - 1 ) -> ( ( A + 1 ) mod M ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re | |- 1 e. RR |
|
| 2 | modaddmod | |- ( ( A e. RR /\ 1 e. RR /\ M e. RR+ ) -> ( ( ( A mod M ) + 1 ) mod M ) = ( ( A + 1 ) mod M ) ) |
|
| 3 | 1 2 | mp3an2 | |- ( ( A e. RR /\ M e. RR+ ) -> ( ( ( A mod M ) + 1 ) mod M ) = ( ( A + 1 ) mod M ) ) |
| 4 | 3 | eqcomd | |- ( ( A e. RR /\ M e. RR+ ) -> ( ( A + 1 ) mod M ) = ( ( ( A mod M ) + 1 ) mod M ) ) |
| 5 | 4 | adantr | |- ( ( ( A e. RR /\ M e. RR+ ) /\ ( A mod M ) = ( M - 1 ) ) -> ( ( A + 1 ) mod M ) = ( ( ( A mod M ) + 1 ) mod M ) ) |
| 6 | oveq1 | |- ( ( A mod M ) = ( M - 1 ) -> ( ( A mod M ) + 1 ) = ( ( M - 1 ) + 1 ) ) |
|
| 7 | 6 | oveq1d | |- ( ( A mod M ) = ( M - 1 ) -> ( ( ( A mod M ) + 1 ) mod M ) = ( ( ( M - 1 ) + 1 ) mod M ) ) |
| 8 | rpcn | |- ( M e. RR+ -> M e. CC ) |
|
| 9 | npcan1 | |- ( M e. CC -> ( ( M - 1 ) + 1 ) = M ) |
|
| 10 | 8 9 | syl | |- ( M e. RR+ -> ( ( M - 1 ) + 1 ) = M ) |
| 11 | 10 | oveq1d | |- ( M e. RR+ -> ( ( ( M - 1 ) + 1 ) mod M ) = ( M mod M ) ) |
| 12 | modid0 | |- ( M e. RR+ -> ( M mod M ) = 0 ) |
|
| 13 | 11 12 | eqtrd | |- ( M e. RR+ -> ( ( ( M - 1 ) + 1 ) mod M ) = 0 ) |
| 14 | 13 | adantl | |- ( ( A e. RR /\ M e. RR+ ) -> ( ( ( M - 1 ) + 1 ) mod M ) = 0 ) |
| 15 | 7 14 | sylan9eqr | |- ( ( ( A e. RR /\ M e. RR+ ) /\ ( A mod M ) = ( M - 1 ) ) -> ( ( ( A mod M ) + 1 ) mod M ) = 0 ) |
| 16 | 5 15 | eqtrd | |- ( ( ( A e. RR /\ M e. RR+ ) /\ ( A mod M ) = ( M - 1 ) ) -> ( ( A + 1 ) mod M ) = 0 ) |
| 17 | 16 | ex | |- ( ( A e. RR /\ M e. RR+ ) -> ( ( A mod M ) = ( M - 1 ) -> ( ( A + 1 ) mod M ) = 0 ) ) |