This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The weak direction of the modular law (e.g., pmod2iN ) that holds in any lattice. (Contributed by NM, 11-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | modle.b | |- B = ( Base ` K ) |
|
| modle.l | |- .<_ = ( le ` K ) |
||
| modle.j | |- .\/ = ( join ` K ) |
||
| modle.m | |- ./\ = ( meet ` K ) |
||
| Assertion | mod2ile | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Z .<_ X -> ( ( X ./\ Y ) .\/ Z ) .<_ ( X ./\ ( Y .\/ Z ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modle.b | |- B = ( Base ` K ) |
|
| 2 | modle.l | |- .<_ = ( le ` K ) |
|
| 3 | modle.j | |- .\/ = ( join ` K ) |
|
| 4 | modle.m | |- ./\ = ( meet ` K ) |
|
| 5 | simpll | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ Z .<_ X ) -> K e. Lat ) |
|
| 6 | simplr3 | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ Z .<_ X ) -> Z e. B ) |
|
| 7 | simplr2 | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ Z .<_ X ) -> Y e. B ) |
|
| 8 | simplr1 | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ Z .<_ X ) -> X e. B ) |
|
| 9 | 6 7 8 | 3jca | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ Z .<_ X ) -> ( Z e. B /\ Y e. B /\ X e. B ) ) |
| 10 | 5 9 | jca | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ Z .<_ X ) -> ( K e. Lat /\ ( Z e. B /\ Y e. B /\ X e. B ) ) ) |
| 11 | simpr | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ Z .<_ X ) -> Z .<_ X ) |
|
| 12 | 1 2 3 4 | mod1ile | |- ( ( K e. Lat /\ ( Z e. B /\ Y e. B /\ X e. B ) ) -> ( Z .<_ X -> ( Z .\/ ( Y ./\ X ) ) .<_ ( ( Z .\/ Y ) ./\ X ) ) ) |
| 13 | 10 11 12 | sylc | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ Z .<_ X ) -> ( Z .\/ ( Y ./\ X ) ) .<_ ( ( Z .\/ Y ) ./\ X ) ) |
| 14 | 1 4 | latmcom | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) = ( Y ./\ X ) ) |
| 15 | 5 8 7 14 | syl3anc | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ Z .<_ X ) -> ( X ./\ Y ) = ( Y ./\ X ) ) |
| 16 | 15 | oveq1d | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ Z .<_ X ) -> ( ( X ./\ Y ) .\/ Z ) = ( ( Y ./\ X ) .\/ Z ) ) |
| 17 | 1 4 | latmcl | |- ( ( K e. Lat /\ Y e. B /\ X e. B ) -> ( Y ./\ X ) e. B ) |
| 18 | 5 7 8 17 | syl3anc | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ Z .<_ X ) -> ( Y ./\ X ) e. B ) |
| 19 | 1 3 | latjcom | |- ( ( K e. Lat /\ ( Y ./\ X ) e. B /\ Z e. B ) -> ( ( Y ./\ X ) .\/ Z ) = ( Z .\/ ( Y ./\ X ) ) ) |
| 20 | 5 18 6 19 | syl3anc | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ Z .<_ X ) -> ( ( Y ./\ X ) .\/ Z ) = ( Z .\/ ( Y ./\ X ) ) ) |
| 21 | 16 20 | eqtrd | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ Z .<_ X ) -> ( ( X ./\ Y ) .\/ Z ) = ( Z .\/ ( Y ./\ X ) ) ) |
| 22 | 1 3 | latjcom | |- ( ( K e. Lat /\ Y e. B /\ Z e. B ) -> ( Y .\/ Z ) = ( Z .\/ Y ) ) |
| 23 | 5 7 6 22 | syl3anc | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ Z .<_ X ) -> ( Y .\/ Z ) = ( Z .\/ Y ) ) |
| 24 | 23 | oveq2d | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ Z .<_ X ) -> ( X ./\ ( Y .\/ Z ) ) = ( X ./\ ( Z .\/ Y ) ) ) |
| 25 | 1 3 | latjcl | |- ( ( K e. Lat /\ Z e. B /\ Y e. B ) -> ( Z .\/ Y ) e. B ) |
| 26 | 5 6 7 25 | syl3anc | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ Z .<_ X ) -> ( Z .\/ Y ) e. B ) |
| 27 | 1 4 | latmcom | |- ( ( K e. Lat /\ X e. B /\ ( Z .\/ Y ) e. B ) -> ( X ./\ ( Z .\/ Y ) ) = ( ( Z .\/ Y ) ./\ X ) ) |
| 28 | 5 8 26 27 | syl3anc | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ Z .<_ X ) -> ( X ./\ ( Z .\/ Y ) ) = ( ( Z .\/ Y ) ./\ X ) ) |
| 29 | 24 28 | eqtrd | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ Z .<_ X ) -> ( X ./\ ( Y .\/ Z ) ) = ( ( Z .\/ Y ) ./\ X ) ) |
| 30 | 13 21 29 | 3brtr4d | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ Z .<_ X ) -> ( ( X ./\ Y ) .\/ Z ) .<_ ( X ./\ ( Y .\/ Z ) ) ) |
| 31 | 30 | ex | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Z .<_ X -> ( ( X ./\ Y ) .\/ Z ) .<_ ( X ./\ ( Y .\/ Z ) ) ) ) |