This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The join of a lattice commutes. (Contributed by NM, 6-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latmcom.b | |- B = ( Base ` K ) |
|
| latmcom.m | |- ./\ = ( meet ` K ) |
||
| Assertion | latmcom | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) = ( Y ./\ X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmcom.b | |- B = ( Base ` K ) |
|
| 2 | latmcom.m | |- ./\ = ( meet ` K ) |
|
| 3 | opelxpi | |- ( ( X e. B /\ Y e. B ) -> <. X , Y >. e. ( B X. B ) ) |
|
| 4 | 3 | 3adant1 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. X , Y >. e. ( B X. B ) ) |
| 5 | eqid | |- ( join ` K ) = ( join ` K ) |
|
| 6 | 1 5 2 | islat | |- ( K e. Lat <-> ( K e. Poset /\ ( dom ( join ` K ) = ( B X. B ) /\ dom ./\ = ( B X. B ) ) ) ) |
| 7 | simprr | |- ( ( K e. Poset /\ ( dom ( join ` K ) = ( B X. B ) /\ dom ./\ = ( B X. B ) ) ) -> dom ./\ = ( B X. B ) ) |
|
| 8 | 6 7 | sylbi | |- ( K e. Lat -> dom ./\ = ( B X. B ) ) |
| 9 | 8 | 3ad2ant1 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> dom ./\ = ( B X. B ) ) |
| 10 | 4 9 | eleqtrrd | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. X , Y >. e. dom ./\ ) |
| 11 | opelxpi | |- ( ( Y e. B /\ X e. B ) -> <. Y , X >. e. ( B X. B ) ) |
|
| 12 | 11 | ancoms | |- ( ( X e. B /\ Y e. B ) -> <. Y , X >. e. ( B X. B ) ) |
| 13 | 12 | 3adant1 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. Y , X >. e. ( B X. B ) ) |
| 14 | 13 9 | eleqtrrd | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. Y , X >. e. dom ./\ ) |
| 15 | 10 14 | jca | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( <. X , Y >. e. dom ./\ /\ <. Y , X >. e. dom ./\ ) ) |
| 16 | latpos | |- ( K e. Lat -> K e. Poset ) |
|
| 17 | 1 2 | meetcom | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ ( <. X , Y >. e. dom ./\ /\ <. Y , X >. e. dom ./\ ) ) -> ( X ./\ Y ) = ( Y ./\ X ) ) |
| 18 | 16 17 | syl3anl1 | |- ( ( ( K e. Lat /\ X e. B /\ Y e. B ) /\ ( <. X , Y >. e. dom ./\ /\ <. Y , X >. e. dom ./\ ) ) -> ( X ./\ Y ) = ( Y ./\ X ) ) |
| 19 | 15 18 | mpdan | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) = ( Y ./\ X ) ) |