This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The weak direction of the modular law (e.g., pmod1i , atmod1i1 ) that holds in any lattice. (Contributed by NM, 11-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | modle.b | |- B = ( Base ` K ) |
|
| modle.l | |- .<_ = ( le ` K ) |
||
| modle.j | |- .\/ = ( join ` K ) |
||
| modle.m | |- ./\ = ( meet ` K ) |
||
| Assertion | mod1ile | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ Z -> ( X .\/ ( Y ./\ Z ) ) .<_ ( ( X .\/ Y ) ./\ Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modle.b | |- B = ( Base ` K ) |
|
| 2 | modle.l | |- .<_ = ( le ` K ) |
|
| 3 | modle.j | |- .\/ = ( join ` K ) |
|
| 4 | modle.m | |- ./\ = ( meet ` K ) |
|
| 5 | simpll | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X .<_ Z ) -> K e. Lat ) |
|
| 6 | simplr1 | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X .<_ Z ) -> X e. B ) |
|
| 7 | simplr2 | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X .<_ Z ) -> Y e. B ) |
|
| 8 | 1 2 3 | latlej1 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> X .<_ ( X .\/ Y ) ) |
| 9 | 5 6 7 8 | syl3anc | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X .<_ Z ) -> X .<_ ( X .\/ Y ) ) |
| 10 | simpr | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X .<_ Z ) -> X .<_ Z ) |
|
| 11 | 1 3 | latjcl | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) e. B ) |
| 12 | 5 6 7 11 | syl3anc | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X .<_ Z ) -> ( X .\/ Y ) e. B ) |
| 13 | simplr3 | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X .<_ Z ) -> Z e. B ) |
|
| 14 | 1 2 4 | latlem12 | |- ( ( K e. Lat /\ ( X e. B /\ ( X .\/ Y ) e. B /\ Z e. B ) ) -> ( ( X .<_ ( X .\/ Y ) /\ X .<_ Z ) <-> X .<_ ( ( X .\/ Y ) ./\ Z ) ) ) |
| 15 | 5 6 12 13 14 | syl13anc | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X .<_ Z ) -> ( ( X .<_ ( X .\/ Y ) /\ X .<_ Z ) <-> X .<_ ( ( X .\/ Y ) ./\ Z ) ) ) |
| 16 | 9 10 15 | mpbi2and | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X .<_ Z ) -> X .<_ ( ( X .\/ Y ) ./\ Z ) ) |
| 17 | 1 2 3 4 | latmlej12 | |- ( ( K e. Lat /\ ( Y e. B /\ Z e. B /\ X e. B ) ) -> ( Y ./\ Z ) .<_ ( X .\/ Y ) ) |
| 18 | 5 7 13 6 17 | syl13anc | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X .<_ Z ) -> ( Y ./\ Z ) .<_ ( X .\/ Y ) ) |
| 19 | 1 2 4 | latmle2 | |- ( ( K e. Lat /\ Y e. B /\ Z e. B ) -> ( Y ./\ Z ) .<_ Z ) |
| 20 | 5 7 13 19 | syl3anc | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X .<_ Z ) -> ( Y ./\ Z ) .<_ Z ) |
| 21 | 1 4 | latmcl | |- ( ( K e. Lat /\ Y e. B /\ Z e. B ) -> ( Y ./\ Z ) e. B ) |
| 22 | 5 7 13 21 | syl3anc | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X .<_ Z ) -> ( Y ./\ Z ) e. B ) |
| 23 | 1 2 4 | latlem12 | |- ( ( K e. Lat /\ ( ( Y ./\ Z ) e. B /\ ( X .\/ Y ) e. B /\ Z e. B ) ) -> ( ( ( Y ./\ Z ) .<_ ( X .\/ Y ) /\ ( Y ./\ Z ) .<_ Z ) <-> ( Y ./\ Z ) .<_ ( ( X .\/ Y ) ./\ Z ) ) ) |
| 24 | 5 22 12 13 23 | syl13anc | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X .<_ Z ) -> ( ( ( Y ./\ Z ) .<_ ( X .\/ Y ) /\ ( Y ./\ Z ) .<_ Z ) <-> ( Y ./\ Z ) .<_ ( ( X .\/ Y ) ./\ Z ) ) ) |
| 25 | 18 20 24 | mpbi2and | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X .<_ Z ) -> ( Y ./\ Z ) .<_ ( ( X .\/ Y ) ./\ Z ) ) |
| 26 | 1 4 | latmcl | |- ( ( K e. Lat /\ ( X .\/ Y ) e. B /\ Z e. B ) -> ( ( X .\/ Y ) ./\ Z ) e. B ) |
| 27 | 5 12 13 26 | syl3anc | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X .<_ Z ) -> ( ( X .\/ Y ) ./\ Z ) e. B ) |
| 28 | 1 2 3 | latjle12 | |- ( ( K e. Lat /\ ( X e. B /\ ( Y ./\ Z ) e. B /\ ( ( X .\/ Y ) ./\ Z ) e. B ) ) -> ( ( X .<_ ( ( X .\/ Y ) ./\ Z ) /\ ( Y ./\ Z ) .<_ ( ( X .\/ Y ) ./\ Z ) ) <-> ( X .\/ ( Y ./\ Z ) ) .<_ ( ( X .\/ Y ) ./\ Z ) ) ) |
| 29 | 5 6 22 27 28 | syl13anc | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X .<_ Z ) -> ( ( X .<_ ( ( X .\/ Y ) ./\ Z ) /\ ( Y ./\ Z ) .<_ ( ( X .\/ Y ) ./\ Z ) ) <-> ( X .\/ ( Y ./\ Z ) ) .<_ ( ( X .\/ Y ) ./\ Z ) ) ) |
| 30 | 16 25 29 | mpbi2and | |- ( ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X .<_ Z ) -> ( X .\/ ( Y ./\ Z ) ) .<_ ( ( X .\/ Y ) ./\ Z ) ) |
| 31 | 30 | ex | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ Z -> ( X .\/ ( Y ./\ Z ) ) .<_ ( ( X .\/ Y ) ./\ Z ) ) ) |