This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dual of the modular law. (Contributed by NM, 8-Apr-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmod.a | |- A = ( Atoms ` K ) |
|
| pmod.s | |- S = ( PSubSp ` K ) |
||
| pmod.p | |- .+ = ( +P ` K ) |
||
| Assertion | pmod2iN | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( Z C_ X -> ( ( X i^i Y ) .+ Z ) = ( X i^i ( Y .+ Z ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmod.a | |- A = ( Atoms ` K ) |
|
| 2 | pmod.s | |- S = ( PSubSp ` K ) |
|
| 3 | pmod.p | |- .+ = ( +P ` K ) |
|
| 4 | incom | |- ( X i^i Y ) = ( Y i^i X ) |
|
| 5 | 4 | oveq1i | |- ( ( X i^i Y ) .+ Z ) = ( ( Y i^i X ) .+ Z ) |
| 6 | hllat | |- ( K e. HL -> K e. Lat ) |
|
| 7 | 6 | 3ad2ant1 | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> K e. Lat ) |
| 8 | simp22 | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> Y C_ A ) |
|
| 9 | ssinss1 | |- ( Y C_ A -> ( Y i^i X ) C_ A ) |
|
| 10 | 8 9 | syl | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> ( Y i^i X ) C_ A ) |
| 11 | simp23 | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> Z C_ A ) |
|
| 12 | 1 3 | paddcom | |- ( ( K e. Lat /\ ( Y i^i X ) C_ A /\ Z C_ A ) -> ( ( Y i^i X ) .+ Z ) = ( Z .+ ( Y i^i X ) ) ) |
| 13 | 7 10 11 12 | syl3anc | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> ( ( Y i^i X ) .+ Z ) = ( Z .+ ( Y i^i X ) ) ) |
| 14 | 5 13 | eqtrid | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> ( ( X i^i Y ) .+ Z ) = ( Z .+ ( Y i^i X ) ) ) |
| 15 | simp21 | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> X e. S ) |
|
| 16 | 11 8 15 | 3jca | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> ( Z C_ A /\ Y C_ A /\ X e. S ) ) |
| 17 | 1 2 3 | pmod1i | |- ( ( K e. HL /\ ( Z C_ A /\ Y C_ A /\ X e. S ) ) -> ( Z C_ X -> ( ( Z .+ Y ) i^i X ) = ( Z .+ ( Y i^i X ) ) ) ) |
| 18 | 17 | 3impia | |- ( ( K e. HL /\ ( Z C_ A /\ Y C_ A /\ X e. S ) /\ Z C_ X ) -> ( ( Z .+ Y ) i^i X ) = ( Z .+ ( Y i^i X ) ) ) |
| 19 | 16 18 | syld3an2 | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> ( ( Z .+ Y ) i^i X ) = ( Z .+ ( Y i^i X ) ) ) |
| 20 | 1 3 | paddcom | |- ( ( K e. Lat /\ Z C_ A /\ Y C_ A ) -> ( Z .+ Y ) = ( Y .+ Z ) ) |
| 21 | 7 11 8 20 | syl3anc | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> ( Z .+ Y ) = ( Y .+ Z ) ) |
| 22 | 21 | ineq1d | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> ( ( Z .+ Y ) i^i X ) = ( ( Y .+ Z ) i^i X ) ) |
| 23 | 14 19 22 | 3eqtr2d | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> ( ( X i^i Y ) .+ Z ) = ( ( Y .+ Z ) i^i X ) ) |
| 24 | incom | |- ( ( Y .+ Z ) i^i X ) = ( X i^i ( Y .+ Z ) ) |
|
| 25 | 23 24 | eqtrdi | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> ( ( X i^i Y ) .+ Z ) = ( X i^i ( Y .+ Z ) ) ) |
| 26 | 25 | 3expia | |- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( Z C_ X -> ( ( X i^i Y ) .+ Z ) = ( X i^i ( Y .+ Z ) ) ) ) |