This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for metnrm . (Contributed by Mario Carneiro, 14-Jan-2014) (Revised by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metdscn.f | |- F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) ) |
|
| metdscn.j | |- J = ( MetOpen ` D ) |
||
| metnrmlem.1 | |- ( ph -> D e. ( *Met ` X ) ) |
||
| metnrmlem.2 | |- ( ph -> S e. ( Clsd ` J ) ) |
||
| metnrmlem.3 | |- ( ph -> T e. ( Clsd ` J ) ) |
||
| metnrmlem.4 | |- ( ph -> ( S i^i T ) = (/) ) |
||
| Assertion | metnrmlem1a | |- ( ( ph /\ A e. T ) -> ( 0 < ( F ` A ) /\ if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) e. RR+ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metdscn.f | |- F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) ) |
|
| 2 | metdscn.j | |- J = ( MetOpen ` D ) |
|
| 3 | metnrmlem.1 | |- ( ph -> D e. ( *Met ` X ) ) |
|
| 4 | metnrmlem.2 | |- ( ph -> S e. ( Clsd ` J ) ) |
|
| 5 | metnrmlem.3 | |- ( ph -> T e. ( Clsd ` J ) ) |
|
| 6 | metnrmlem.4 | |- ( ph -> ( S i^i T ) = (/) ) |
|
| 7 | 6 | adantr | |- ( ( ph /\ A e. T ) -> ( S i^i T ) = (/) ) |
| 8 | inelcm | |- ( ( A e. S /\ A e. T ) -> ( S i^i T ) =/= (/) ) |
|
| 9 | 8 | expcom | |- ( A e. T -> ( A e. S -> ( S i^i T ) =/= (/) ) ) |
| 10 | 9 | adantl | |- ( ( ph /\ A e. T ) -> ( A e. S -> ( S i^i T ) =/= (/) ) ) |
| 11 | 10 | necon2bd | |- ( ( ph /\ A e. T ) -> ( ( S i^i T ) = (/) -> -. A e. S ) ) |
| 12 | 7 11 | mpd | |- ( ( ph /\ A e. T ) -> -. A e. S ) |
| 13 | eqcom | |- ( 0 = ( F ` A ) <-> ( F ` A ) = 0 ) |
|
| 14 | 3 | adantr | |- ( ( ph /\ A e. T ) -> D e. ( *Met ` X ) ) |
| 15 | 4 | adantr | |- ( ( ph /\ A e. T ) -> S e. ( Clsd ` J ) ) |
| 16 | eqid | |- U. J = U. J |
|
| 17 | 16 | cldss | |- ( S e. ( Clsd ` J ) -> S C_ U. J ) |
| 18 | 15 17 | syl | |- ( ( ph /\ A e. T ) -> S C_ U. J ) |
| 19 | 2 | mopnuni | |- ( D e. ( *Met ` X ) -> X = U. J ) |
| 20 | 14 19 | syl | |- ( ( ph /\ A e. T ) -> X = U. J ) |
| 21 | 18 20 | sseqtrrd | |- ( ( ph /\ A e. T ) -> S C_ X ) |
| 22 | 5 | adantr | |- ( ( ph /\ A e. T ) -> T e. ( Clsd ` J ) ) |
| 23 | 16 | cldss | |- ( T e. ( Clsd ` J ) -> T C_ U. J ) |
| 24 | 22 23 | syl | |- ( ( ph /\ A e. T ) -> T C_ U. J ) |
| 25 | 24 20 | sseqtrrd | |- ( ( ph /\ A e. T ) -> T C_ X ) |
| 26 | simpr | |- ( ( ph /\ A e. T ) -> A e. T ) |
|
| 27 | 25 26 | sseldd | |- ( ( ph /\ A e. T ) -> A e. X ) |
| 28 | 1 2 | metdseq0 | |- ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> ( ( F ` A ) = 0 <-> A e. ( ( cls ` J ) ` S ) ) ) |
| 29 | 14 21 27 28 | syl3anc | |- ( ( ph /\ A e. T ) -> ( ( F ` A ) = 0 <-> A e. ( ( cls ` J ) ` S ) ) ) |
| 30 | 13 29 | bitrid | |- ( ( ph /\ A e. T ) -> ( 0 = ( F ` A ) <-> A e. ( ( cls ` J ) ` S ) ) ) |
| 31 | cldcls | |- ( S e. ( Clsd ` J ) -> ( ( cls ` J ) ` S ) = S ) |
|
| 32 | 15 31 | syl | |- ( ( ph /\ A e. T ) -> ( ( cls ` J ) ` S ) = S ) |
| 33 | 32 | eleq2d | |- ( ( ph /\ A e. T ) -> ( A e. ( ( cls ` J ) ` S ) <-> A e. S ) ) |
| 34 | 30 33 | bitrd | |- ( ( ph /\ A e. T ) -> ( 0 = ( F ` A ) <-> A e. S ) ) |
| 35 | 12 34 | mtbird | |- ( ( ph /\ A e. T ) -> -. 0 = ( F ` A ) ) |
| 36 | 1 | metdsf | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> F : X --> ( 0 [,] +oo ) ) |
| 37 | 14 21 36 | syl2anc | |- ( ( ph /\ A e. T ) -> F : X --> ( 0 [,] +oo ) ) |
| 38 | 37 27 | ffvelcdmd | |- ( ( ph /\ A e. T ) -> ( F ` A ) e. ( 0 [,] +oo ) ) |
| 39 | elxrge0 | |- ( ( F ` A ) e. ( 0 [,] +oo ) <-> ( ( F ` A ) e. RR* /\ 0 <_ ( F ` A ) ) ) |
|
| 40 | 39 | simprbi | |- ( ( F ` A ) e. ( 0 [,] +oo ) -> 0 <_ ( F ` A ) ) |
| 41 | 38 40 | syl | |- ( ( ph /\ A e. T ) -> 0 <_ ( F ` A ) ) |
| 42 | 0xr | |- 0 e. RR* |
|
| 43 | eliccxr | |- ( ( F ` A ) e. ( 0 [,] +oo ) -> ( F ` A ) e. RR* ) |
|
| 44 | 38 43 | syl | |- ( ( ph /\ A e. T ) -> ( F ` A ) e. RR* ) |
| 45 | xrleloe | |- ( ( 0 e. RR* /\ ( F ` A ) e. RR* ) -> ( 0 <_ ( F ` A ) <-> ( 0 < ( F ` A ) \/ 0 = ( F ` A ) ) ) ) |
|
| 46 | 42 44 45 | sylancr | |- ( ( ph /\ A e. T ) -> ( 0 <_ ( F ` A ) <-> ( 0 < ( F ` A ) \/ 0 = ( F ` A ) ) ) ) |
| 47 | 41 46 | mpbid | |- ( ( ph /\ A e. T ) -> ( 0 < ( F ` A ) \/ 0 = ( F ` A ) ) ) |
| 48 | 47 | ord | |- ( ( ph /\ A e. T ) -> ( -. 0 < ( F ` A ) -> 0 = ( F ` A ) ) ) |
| 49 | 35 48 | mt3d | |- ( ( ph /\ A e. T ) -> 0 < ( F ` A ) ) |
| 50 | 1xr | |- 1 e. RR* |
|
| 51 | ifcl | |- ( ( 1 e. RR* /\ ( F ` A ) e. RR* ) -> if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) e. RR* ) |
|
| 52 | 50 44 51 | sylancr | |- ( ( ph /\ A e. T ) -> if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) e. RR* ) |
| 53 | 1red | |- ( ( ph /\ A e. T ) -> 1 e. RR ) |
|
| 54 | 0lt1 | |- 0 < 1 |
|
| 55 | breq2 | |- ( 1 = if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) -> ( 0 < 1 <-> 0 < if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) ) ) |
|
| 56 | breq2 | |- ( ( F ` A ) = if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) -> ( 0 < ( F ` A ) <-> 0 < if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) ) ) |
|
| 57 | 55 56 | ifboth | |- ( ( 0 < 1 /\ 0 < ( F ` A ) ) -> 0 < if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) ) |
| 58 | 54 49 57 | sylancr | |- ( ( ph /\ A e. T ) -> 0 < if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) ) |
| 59 | xrltle | |- ( ( 0 e. RR* /\ if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) e. RR* ) -> ( 0 < if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) -> 0 <_ if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) ) ) |
|
| 60 | 42 52 59 | sylancr | |- ( ( ph /\ A e. T ) -> ( 0 < if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) -> 0 <_ if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) ) ) |
| 61 | 58 60 | mpd | |- ( ( ph /\ A e. T ) -> 0 <_ if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) ) |
| 62 | xrmin1 | |- ( ( 1 e. RR* /\ ( F ` A ) e. RR* ) -> if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) <_ 1 ) |
|
| 63 | 50 44 62 | sylancr | |- ( ( ph /\ A e. T ) -> if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) <_ 1 ) |
| 64 | xrrege0 | |- ( ( ( if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) e. RR* /\ 1 e. RR ) /\ ( 0 <_ if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) /\ if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) <_ 1 ) ) -> if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) e. RR ) |
|
| 65 | 52 53 61 63 64 | syl22anc | |- ( ( ph /\ A e. T ) -> if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) e. RR ) |
| 66 | 65 58 | elrpd | |- ( ( ph /\ A e. T ) -> if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) e. RR+ ) |
| 67 | 49 66 | jca | |- ( ( ph /\ A e. T ) -> ( 0 < ( F ` A ) /\ if ( 1 <_ ( F ` A ) , 1 , ( F ` A ) ) e. RR+ ) ) |