This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrmin1 | |- ( ( A e. RR* /\ B e. RR* ) -> if ( A <_ B , A , B ) <_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue | |- ( A <_ B -> if ( A <_ B , A , B ) = A ) |
|
| 2 | 1 | adantl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A <_ B ) -> if ( A <_ B , A , B ) = A ) |
| 3 | xrleid | |- ( A e. RR* -> A <_ A ) |
|
| 4 | 3 | ad2antrr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A <_ B ) -> A <_ A ) |
| 5 | 2 4 | eqbrtrd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A <_ B ) -> if ( A <_ B , A , B ) <_ A ) |
| 6 | iffalse | |- ( -. A <_ B -> if ( A <_ B , A , B ) = B ) |
|
| 7 | 6 | adantl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> if ( A <_ B , A , B ) = B ) |
| 8 | xrletri | |- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B \/ B <_ A ) ) |
|
| 9 | 8 | orcanai | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> B <_ A ) |
| 10 | 7 9 | eqbrtrd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A <_ B ) -> if ( A <_ B , A , B ) <_ A ) |
| 11 | 5 10 | pm2.61dan | |- ( ( A e. RR* /\ B e. RR* ) -> if ( A <_ B , A , B ) <_ A ) |