This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A metric space is normal. (Contributed by Jeff Hankins, 31-Aug-2013) (Revised by Mario Carneiro, 5-Sep-2015) (Proof shortened by AV, 30-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metnrm.j | |- J = ( MetOpen ` D ) |
|
| Assertion | metnrm | |- ( D e. ( *Met ` X ) -> J e. Nrm ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metnrm.j | |- J = ( MetOpen ` D ) |
|
| 2 | 1 | mopntop | |- ( D e. ( *Met ` X ) -> J e. Top ) |
| 3 | eqid | |- ( u e. X |-> inf ( ran ( v e. x |-> ( u D v ) ) , RR* , < ) ) = ( u e. X |-> inf ( ran ( v e. x |-> ( u D v ) ) , RR* , < ) ) |
|
| 4 | simp1 | |- ( ( D e. ( *Met ` X ) /\ ( x e. ( Clsd ` J ) /\ y e. ( Clsd ` J ) ) /\ ( x i^i y ) = (/) ) -> D e. ( *Met ` X ) ) |
|
| 5 | simp2l | |- ( ( D e. ( *Met ` X ) /\ ( x e. ( Clsd ` J ) /\ y e. ( Clsd ` J ) ) /\ ( x i^i y ) = (/) ) -> x e. ( Clsd ` J ) ) |
|
| 6 | simp2r | |- ( ( D e. ( *Met ` X ) /\ ( x e. ( Clsd ` J ) /\ y e. ( Clsd ` J ) ) /\ ( x i^i y ) = (/) ) -> y e. ( Clsd ` J ) ) |
|
| 7 | simp3 | |- ( ( D e. ( *Met ` X ) /\ ( x e. ( Clsd ` J ) /\ y e. ( Clsd ` J ) ) /\ ( x i^i y ) = (/) ) -> ( x i^i y ) = (/) ) |
|
| 8 | eqid | |- U_ s e. y ( s ( ball ` D ) ( if ( 1 <_ ( ( u e. X |-> inf ( ran ( v e. x |-> ( u D v ) ) , RR* , < ) ) ` s ) , 1 , ( ( u e. X |-> inf ( ran ( v e. x |-> ( u D v ) ) , RR* , < ) ) ` s ) ) / 2 ) ) = U_ s e. y ( s ( ball ` D ) ( if ( 1 <_ ( ( u e. X |-> inf ( ran ( v e. x |-> ( u D v ) ) , RR* , < ) ) ` s ) , 1 , ( ( u e. X |-> inf ( ran ( v e. x |-> ( u D v ) ) , RR* , < ) ) ` s ) ) / 2 ) ) |
|
| 9 | eqid | |- ( u e. X |-> inf ( ran ( v e. y |-> ( u D v ) ) , RR* , < ) ) = ( u e. X |-> inf ( ran ( v e. y |-> ( u D v ) ) , RR* , < ) ) |
|
| 10 | eqid | |- U_ t e. x ( t ( ball ` D ) ( if ( 1 <_ ( ( u e. X |-> inf ( ran ( v e. y |-> ( u D v ) ) , RR* , < ) ) ` t ) , 1 , ( ( u e. X |-> inf ( ran ( v e. y |-> ( u D v ) ) , RR* , < ) ) ` t ) ) / 2 ) ) = U_ t e. x ( t ( ball ` D ) ( if ( 1 <_ ( ( u e. X |-> inf ( ran ( v e. y |-> ( u D v ) ) , RR* , < ) ) ` t ) , 1 , ( ( u e. X |-> inf ( ran ( v e. y |-> ( u D v ) ) , RR* , < ) ) ` t ) ) / 2 ) ) |
|
| 11 | 3 1 4 5 6 7 8 9 10 | metnrmlem3 | |- ( ( D e. ( *Met ` X ) /\ ( x e. ( Clsd ` J ) /\ y e. ( Clsd ` J ) ) /\ ( x i^i y ) = (/) ) -> E. z e. J E. w e. J ( x C_ z /\ y C_ w /\ ( z i^i w ) = (/) ) ) |
| 12 | 11 | 3expia | |- ( ( D e. ( *Met ` X ) /\ ( x e. ( Clsd ` J ) /\ y e. ( Clsd ` J ) ) ) -> ( ( x i^i y ) = (/) -> E. z e. J E. w e. J ( x C_ z /\ y C_ w /\ ( z i^i w ) = (/) ) ) ) |
| 13 | 12 | ralrimivva | |- ( D e. ( *Met ` X ) -> A. x e. ( Clsd ` J ) A. y e. ( Clsd ` J ) ( ( x i^i y ) = (/) -> E. z e. J E. w e. J ( x C_ z /\ y C_ w /\ ( z i^i w ) = (/) ) ) ) |
| 14 | isnrm3 | |- ( J e. Nrm <-> ( J e. Top /\ A. x e. ( Clsd ` J ) A. y e. ( Clsd ` J ) ( ( x i^i y ) = (/) -> E. z e. J E. w e. J ( x C_ z /\ y C_ w /\ ( z i^i w ) = (/) ) ) ) ) |
|
| 15 | 2 13 14 | sylanbrc | |- ( D e. ( *Met ` X ) -> J e. Nrm ) |