This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of meet function for a poset. (Contributed by NM, 12-Sep-2011) (Revised by NM, 9-Sep-2018) TODO: prove meetfval2 first to reduce net proof size (existence part)?
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meetfval.u | |- G = ( glb ` K ) |
|
| meetfval.m | |- ./\ = ( meet ` K ) |
||
| Assertion | meetfval | |- ( K e. V -> ./\ = { <. <. x , y >. , z >. | { x , y } G z } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetfval.u | |- G = ( glb ` K ) |
|
| 2 | meetfval.m | |- ./\ = ( meet ` K ) |
|
| 3 | elex | |- ( K e. V -> K e. _V ) |
|
| 4 | fvex | |- ( Base ` K ) e. _V |
|
| 5 | moeq | |- E* z z = ( G ` { x , y } ) |
|
| 6 | 5 | a1i | |- ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) -> E* z z = ( G ` { x , y } ) ) |
| 7 | eqid | |- { <. <. x , y >. , z >. | ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) } = { <. <. x , y >. , z >. | ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) } |
|
| 8 | 4 4 6 7 | oprabex | |- { <. <. x , y >. , z >. | ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) } e. _V |
| 9 | 8 | a1i | |- ( K e. _V -> { <. <. x , y >. , z >. | ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) } e. _V ) |
| 10 | 1 | glbfun | |- Fun G |
| 11 | funbrfv2b | |- ( Fun G -> ( { x , y } G z <-> ( { x , y } e. dom G /\ ( G ` { x , y } ) = z ) ) ) |
|
| 12 | 10 11 | ax-mp | |- ( { x , y } G z <-> ( { x , y } e. dom G /\ ( G ` { x , y } ) = z ) ) |
| 13 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 14 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 15 | simpl | |- ( ( K e. _V /\ { x , y } e. dom G ) -> K e. _V ) |
|
| 16 | simpr | |- ( ( K e. _V /\ { x , y } e. dom G ) -> { x , y } e. dom G ) |
|
| 17 | 13 14 1 15 16 | glbelss | |- ( ( K e. _V /\ { x , y } e. dom G ) -> { x , y } C_ ( Base ` K ) ) |
| 18 | 17 | ex | |- ( K e. _V -> ( { x , y } e. dom G -> { x , y } C_ ( Base ` K ) ) ) |
| 19 | vex | |- x e. _V |
|
| 20 | vex | |- y e. _V |
|
| 21 | 19 20 | prss | |- ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) <-> { x , y } C_ ( Base ` K ) ) |
| 22 | 18 21 | imbitrrdi | |- ( K e. _V -> ( { x , y } e. dom G -> ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) ) |
| 23 | eqcom | |- ( ( G ` { x , y } ) = z <-> z = ( G ` { x , y } ) ) |
|
| 24 | 23 | biimpi | |- ( ( G ` { x , y } ) = z -> z = ( G ` { x , y } ) ) |
| 25 | 22 24 | anim12d1 | |- ( K e. _V -> ( ( { x , y } e. dom G /\ ( G ` { x , y } ) = z ) -> ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) ) ) |
| 26 | 12 25 | biimtrid | |- ( K e. _V -> ( { x , y } G z -> ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) ) ) |
| 27 | 26 | alrimiv | |- ( K e. _V -> A. z ( { x , y } G z -> ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) ) ) |
| 28 | 27 | alrimiv | |- ( K e. _V -> A. y A. z ( { x , y } G z -> ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) ) ) |
| 29 | 28 | alrimiv | |- ( K e. _V -> A. x A. y A. z ( { x , y } G z -> ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) ) ) |
| 30 | ssoprab2 | |- ( A. x A. y A. z ( { x , y } G z -> ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) ) -> { <. <. x , y >. , z >. | { x , y } G z } C_ { <. <. x , y >. , z >. | ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) } ) |
|
| 31 | 29 30 | syl | |- ( K e. _V -> { <. <. x , y >. , z >. | { x , y } G z } C_ { <. <. x , y >. , z >. | ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) /\ z = ( G ` { x , y } ) ) } ) |
| 32 | 9 31 | ssexd | |- ( K e. _V -> { <. <. x , y >. , z >. | { x , y } G z } e. _V ) |
| 33 | fveq2 | |- ( p = K -> ( glb ` p ) = ( glb ` K ) ) |
|
| 34 | 33 1 | eqtr4di | |- ( p = K -> ( glb ` p ) = G ) |
| 35 | 34 | breqd | |- ( p = K -> ( { x , y } ( glb ` p ) z <-> { x , y } G z ) ) |
| 36 | 35 | oprabbidv | |- ( p = K -> { <. <. x , y >. , z >. | { x , y } ( glb ` p ) z } = { <. <. x , y >. , z >. | { x , y } G z } ) |
| 37 | df-meet | |- meet = ( p e. _V |-> { <. <. x , y >. , z >. | { x , y } ( glb ` p ) z } ) |
|
| 38 | 36 37 | fvmptg | |- ( ( K e. _V /\ { <. <. x , y >. , z >. | { x , y } G z } e. _V ) -> ( meet ` K ) = { <. <. x , y >. , z >. | { x , y } G z } ) |
| 39 | 32 38 | mpdan | |- ( K e. _V -> ( meet ` K ) = { <. <. x , y >. , z >. | { x , y } G z } ) |
| 40 | 2 39 | eqtrid | |- ( K e. _V -> ./\ = { <. <. x , y >. , z >. | { x , y } G z } ) |
| 41 | 3 40 | syl | |- ( K e. V -> ./\ = { <. <. x , y >. , z >. | { x , y } G z } ) |