This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of meet function for a poset. (Contributed by NM, 12-Sep-2011) (Revised by NM, 9-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meetfval.u | |- G = ( glb ` K ) |
|
| meetfval.m | |- ./\ = ( meet ` K ) |
||
| Assertion | meetfval2 | |- ( K e. V -> ./\ = { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetfval.u | |- G = ( glb ` K ) |
|
| 2 | meetfval.m | |- ./\ = ( meet ` K ) |
|
| 3 | 1 2 | meetfval | |- ( K e. V -> ./\ = { <. <. x , y >. , z >. | { x , y } G z } ) |
| 4 | 1 | glbfun | |- Fun G |
| 5 | funbrfv2b | |- ( Fun G -> ( { x , y } G z <-> ( { x , y } e. dom G /\ ( G ` { x , y } ) = z ) ) ) |
|
| 6 | 4 5 | ax-mp | |- ( { x , y } G z <-> ( { x , y } e. dom G /\ ( G ` { x , y } ) = z ) ) |
| 7 | eqcom | |- ( ( G ` { x , y } ) = z <-> z = ( G ` { x , y } ) ) |
|
| 8 | 7 | anbi2i | |- ( ( { x , y } e. dom G /\ ( G ` { x , y } ) = z ) <-> ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) ) |
| 9 | 6 8 | bitri | |- ( { x , y } G z <-> ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) ) |
| 10 | 9 | oprabbii | |- { <. <. x , y >. , z >. | { x , y } G z } = { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } |
| 11 | 3 10 | eqtrdi | |- ( K e. V -> ./\ = { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } ) |