This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent wff's yield equal operation class abstractions (deduction form). (Contributed by NM, 21-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oprabbidv.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| Assertion | oprabbidv | |- ( ph -> { <. <. x , y >. , z >. | ps } = { <. <. x , y >. , z >. | ch } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oprabbidv.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| 2 | 1 | anbi2d | |- ( ph -> ( ( w = <. <. x , y >. , z >. /\ ps ) <-> ( w = <. <. x , y >. , z >. /\ ch ) ) ) |
| 3 | 2 | exbidv | |- ( ph -> ( E. z ( w = <. <. x , y >. , z >. /\ ps ) <-> E. z ( w = <. <. x , y >. , z >. /\ ch ) ) ) |
| 4 | 3 | exbidv | |- ( ph -> ( E. y E. z ( w = <. <. x , y >. , z >. /\ ps ) <-> E. y E. z ( w = <. <. x , y >. , z >. /\ ch ) ) ) |
| 5 | 4 | exbidv | |- ( ph -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ps ) <-> E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ch ) ) ) |
| 6 | 5 | abbidv | |- ( ph -> { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ps ) } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ch ) } ) |
| 7 | df-oprab | |- { <. <. x , y >. , z >. | ps } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ps ) } |
|
| 8 | df-oprab | |- { <. <. x , y >. , z >. | ch } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ch ) } |
|
| 9 | 6 7 8 | 3eqtr4g | |- ( ph -> { <. <. x , y >. , z >. | ps } = { <. <. x , y >. , z >. | ch } ) |