This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of an operation class abstraction. (Contributed by NM, 19-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oprabex.1 | |- A e. _V |
|
| oprabex.2 | |- B e. _V |
||
| oprabex.3 | |- ( ( x e. A /\ y e. B ) -> E* z ph ) |
||
| oprabex.4 | |- F = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ph ) } |
||
| Assertion | oprabex | |- F e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oprabex.1 | |- A e. _V |
|
| 2 | oprabex.2 | |- B e. _V |
|
| 3 | oprabex.3 | |- ( ( x e. A /\ y e. B ) -> E* z ph ) |
|
| 4 | oprabex.4 | |- F = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ph ) } |
|
| 5 | moanimv | |- ( E* z ( ( x e. A /\ y e. B ) /\ ph ) <-> ( ( x e. A /\ y e. B ) -> E* z ph ) ) |
|
| 6 | 3 5 | mpbir | |- E* z ( ( x e. A /\ y e. B ) /\ ph ) |
| 7 | 6 | funoprab | |- Fun { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ph ) } |
| 8 | 1 2 | xpex | |- ( A X. B ) e. _V |
| 9 | dmoprabss | |- dom { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ph ) } C_ ( A X. B ) |
|
| 10 | 8 9 | ssexi | |- dom { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ph ) } e. _V |
| 11 | funex | |- ( ( Fun { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ph ) } /\ dom { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ph ) } e. _V ) -> { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ph ) } e. _V ) |
|
| 12 | 7 10 11 | mp2an | |- { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ph ) } e. _V |
| 13 | 4 12 | eqeltri | |- F e. _V |