This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2 . (Contributed by FL, 6-Nov-2013) (Proof shortened by Mario Carneiro, 11-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssoprab2 | |- ( A. x A. y A. z ( ph -> ps ) -> { <. <. x , y >. , z >. | ph } C_ { <. <. x , y >. , z >. | ps } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( ( ph -> ps ) -> ( ph -> ps ) ) |
|
| 2 | 1 | anim2d | |- ( ( ph -> ps ) -> ( ( w = <. <. x , y >. , z >. /\ ph ) -> ( w = <. <. x , y >. , z >. /\ ps ) ) ) |
| 3 | 2 | aleximi | |- ( A. z ( ph -> ps ) -> ( E. z ( w = <. <. x , y >. , z >. /\ ph ) -> E. z ( w = <. <. x , y >. , z >. /\ ps ) ) ) |
| 4 | 3 | aleximi | |- ( A. y A. z ( ph -> ps ) -> ( E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> E. y E. z ( w = <. <. x , y >. , z >. /\ ps ) ) ) |
| 5 | 4 | aleximi | |- ( A. x A. y A. z ( ph -> ps ) -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ps ) ) ) |
| 6 | 5 | ss2abdv | |- ( A. x A. y A. z ( ph -> ps ) -> { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) } C_ { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ps ) } ) |
| 7 | df-oprab | |- { <. <. x , y >. , z >. | ph } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) } |
|
| 8 | df-oprab | |- { <. <. x , y >. , z >. | ps } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ps ) } |
|
| 9 | 6 7 8 | 3sstr4g | |- ( A. x A. y A. z ( ph -> ps ) -> { <. <. x , y >. , z >. | ph } C_ { <. <. x , y >. , z >. | ps } ) |