This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of meet function for a poset. (Contributed by NM, 12-Sep-2011) (Revised by NM, 9-Sep-2018) TODO: prove meetfval2 first to reduce net proof size (existence part)?
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meetfval.u | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| meetfval.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| Assertion | meetfval | ⊢ ( 𝐾 ∈ 𝑉 → ∧ = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } 𝐺 𝑧 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetfval.u | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 2 | meetfval.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 3 | elex | ⊢ ( 𝐾 ∈ 𝑉 → 𝐾 ∈ V ) | |
| 4 | fvex | ⊢ ( Base ‘ 𝐾 ) ∈ V | |
| 5 | moeq | ⊢ ∃* 𝑧 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) | |
| 6 | 5 | a1i | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ∃* 𝑧 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) |
| 7 | eqid | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) } | |
| 8 | 4 4 6 7 | oprabex | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) } ∈ V |
| 9 | 8 | a1i | ⊢ ( 𝐾 ∈ V → { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) } ∈ V ) |
| 10 | 1 | glbfun | ⊢ Fun 𝐺 |
| 11 | funbrfv2b | ⊢ ( Fun 𝐺 → ( { 𝑥 , 𝑦 } 𝐺 𝑧 ↔ ( { 𝑥 , 𝑦 } ∈ dom 𝐺 ∧ ( 𝐺 ‘ { 𝑥 , 𝑦 } ) = 𝑧 ) ) ) | |
| 12 | 10 11 | ax-mp | ⊢ ( { 𝑥 , 𝑦 } 𝐺 𝑧 ↔ ( { 𝑥 , 𝑦 } ∈ dom 𝐺 ∧ ( 𝐺 ‘ { 𝑥 , 𝑦 } ) = 𝑧 ) ) |
| 13 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 14 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 15 | simpl | ⊢ ( ( 𝐾 ∈ V ∧ { 𝑥 , 𝑦 } ∈ dom 𝐺 ) → 𝐾 ∈ V ) | |
| 16 | simpr | ⊢ ( ( 𝐾 ∈ V ∧ { 𝑥 , 𝑦 } ∈ dom 𝐺 ) → { 𝑥 , 𝑦 } ∈ dom 𝐺 ) | |
| 17 | 13 14 1 15 16 | glbelss | ⊢ ( ( 𝐾 ∈ V ∧ { 𝑥 , 𝑦 } ∈ dom 𝐺 ) → { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝐾 ) ) |
| 18 | 17 | ex | ⊢ ( 𝐾 ∈ V → ( { 𝑥 , 𝑦 } ∈ dom 𝐺 → { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝐾 ) ) ) |
| 19 | vex | ⊢ 𝑥 ∈ V | |
| 20 | vex | ⊢ 𝑦 ∈ V | |
| 21 | 19 20 | prss | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ↔ { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝐾 ) ) |
| 22 | 18 21 | imbitrrdi | ⊢ ( 𝐾 ∈ V → ( { 𝑥 , 𝑦 } ∈ dom 𝐺 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) ) |
| 23 | eqcom | ⊢ ( ( 𝐺 ‘ { 𝑥 , 𝑦 } ) = 𝑧 ↔ 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) | |
| 24 | 23 | biimpi | ⊢ ( ( 𝐺 ‘ { 𝑥 , 𝑦 } ) = 𝑧 → 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) |
| 25 | 22 24 | anim12d1 | ⊢ ( 𝐾 ∈ V → ( ( { 𝑥 , 𝑦 } ∈ dom 𝐺 ∧ ( 𝐺 ‘ { 𝑥 , 𝑦 } ) = 𝑧 ) → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) ) ) |
| 26 | 12 25 | biimtrid | ⊢ ( 𝐾 ∈ V → ( { 𝑥 , 𝑦 } 𝐺 𝑧 → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) ) ) |
| 27 | 26 | alrimiv | ⊢ ( 𝐾 ∈ V → ∀ 𝑧 ( { 𝑥 , 𝑦 } 𝐺 𝑧 → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) ) ) |
| 28 | 27 | alrimiv | ⊢ ( 𝐾 ∈ V → ∀ 𝑦 ∀ 𝑧 ( { 𝑥 , 𝑦 } 𝐺 𝑧 → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) ) ) |
| 29 | 28 | alrimiv | ⊢ ( 𝐾 ∈ V → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( { 𝑥 , 𝑦 } 𝐺 𝑧 → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) ) ) |
| 30 | ssoprab2 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( { 𝑥 , 𝑦 } 𝐺 𝑧 → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) ) → { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } 𝐺 𝑧 } ⊆ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) } ) | |
| 31 | 29 30 | syl | ⊢ ( 𝐾 ∈ V → { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } 𝐺 𝑧 } ⊆ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) } ) |
| 32 | 9 31 | ssexd | ⊢ ( 𝐾 ∈ V → { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } 𝐺 𝑧 } ∈ V ) |
| 33 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( glb ‘ 𝑝 ) = ( glb ‘ 𝐾 ) ) | |
| 34 | 33 1 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( glb ‘ 𝑝 ) = 𝐺 ) |
| 35 | 34 | breqd | ⊢ ( 𝑝 = 𝐾 → ( { 𝑥 , 𝑦 } ( glb ‘ 𝑝 ) 𝑧 ↔ { 𝑥 , 𝑦 } 𝐺 𝑧 ) ) |
| 36 | 35 | oprabbidv | ⊢ ( 𝑝 = 𝐾 → { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } ( glb ‘ 𝑝 ) 𝑧 } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } 𝐺 𝑧 } ) |
| 37 | df-meet | ⊢ meet = ( 𝑝 ∈ V ↦ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } ( glb ‘ 𝑝 ) 𝑧 } ) | |
| 38 | 36 37 | fvmptg | ⊢ ( ( 𝐾 ∈ V ∧ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } 𝐺 𝑧 } ∈ V ) → ( meet ‘ 𝐾 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } 𝐺 𝑧 } ) |
| 39 | 32 38 | mpdan | ⊢ ( 𝐾 ∈ V → ( meet ‘ 𝐾 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } 𝐺 𝑧 } ) |
| 40 | 2 39 | eqtrid | ⊢ ( 𝐾 ∈ V → ∧ = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } 𝐺 𝑧 } ) |
| 41 | 3 40 | syl | ⊢ ( 𝐾 ∈ 𝑉 → ∧ = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } 𝐺 𝑧 } ) |