This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the matrix ring as a mapping operation. (Contributed by Stefan O'Rear, 11-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matbas2.a | |- A = ( N Mat R ) |
|
| matbas2.k | |- K = ( Base ` R ) |
||
| matbas2i.b | |- B = ( Base ` A ) |
||
| matbas2d.n | |- ( ph -> N e. Fin ) |
||
| matbas2d.r | |- ( ph -> R e. V ) |
||
| matbas2d.c | |- ( ( ph /\ x e. N /\ y e. N ) -> C e. K ) |
||
| Assertion | matbas2d | |- ( ph -> ( x e. N , y e. N |-> C ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matbas2.a | |- A = ( N Mat R ) |
|
| 2 | matbas2.k | |- K = ( Base ` R ) |
|
| 3 | matbas2i.b | |- B = ( Base ` A ) |
|
| 4 | matbas2d.n | |- ( ph -> N e. Fin ) |
|
| 5 | matbas2d.r | |- ( ph -> R e. V ) |
|
| 6 | matbas2d.c | |- ( ( ph /\ x e. N /\ y e. N ) -> C e. K ) |
|
| 7 | 6 | 3expb | |- ( ( ph /\ ( x e. N /\ y e. N ) ) -> C e. K ) |
| 8 | 7 | ralrimivva | |- ( ph -> A. x e. N A. y e. N C e. K ) |
| 9 | eqid | |- ( x e. N , y e. N |-> C ) = ( x e. N , y e. N |-> C ) |
|
| 10 | 9 | fmpo | |- ( A. x e. N A. y e. N C e. K <-> ( x e. N , y e. N |-> C ) : ( N X. N ) --> K ) |
| 11 | 8 10 | sylib | |- ( ph -> ( x e. N , y e. N |-> C ) : ( N X. N ) --> K ) |
| 12 | 1 2 | matbas2 | |- ( ( N e. Fin /\ R e. V ) -> ( K ^m ( N X. N ) ) = ( Base ` A ) ) |
| 13 | 4 5 12 | syl2anc | |- ( ph -> ( K ^m ( N X. N ) ) = ( Base ` A ) ) |
| 14 | 3 13 | eqtr4id | |- ( ph -> B = ( K ^m ( N X. N ) ) ) |
| 15 | 14 | eleq2d | |- ( ph -> ( ( x e. N , y e. N |-> C ) e. B <-> ( x e. N , y e. N |-> C ) e. ( K ^m ( N X. N ) ) ) ) |
| 16 | 2 | fvexi | |- K e. _V |
| 17 | 4 4 | xpexd | |- ( ph -> ( N X. N ) e. _V ) |
| 18 | elmapg | |- ( ( K e. _V /\ ( N X. N ) e. _V ) -> ( ( x e. N , y e. N |-> C ) e. ( K ^m ( N X. N ) ) <-> ( x e. N , y e. N |-> C ) : ( N X. N ) --> K ) ) |
|
| 19 | 16 17 18 | sylancr | |- ( ph -> ( ( x e. N , y e. N |-> C ) e. ( K ^m ( N X. N ) ) <-> ( x e. N , y e. N |-> C ) : ( N X. N ) --> K ) ) |
| 20 | 15 19 | bitrd | |- ( ph -> ( ( x e. N , y e. N |-> C ) e. B <-> ( x e. N , y e. N |-> C ) : ( N X. N ) --> K ) ) |
| 21 | 11 20 | mpbird | |- ( ph -> ( x e. N , y e. N |-> C ) e. B ) |