This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant of a matrix with a row containing only 0's is 0. (Contributed by SO, 16-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetr0.d | |- D = ( N maDet R ) |
|
| mdetr0.k | |- K = ( Base ` R ) |
||
| mdetr0.z | |- .0. = ( 0g ` R ) |
||
| mdetr0.r | |- ( ph -> R e. CRing ) |
||
| mdetr0.n | |- ( ph -> N e. Fin ) |
||
| mdetr0.x | |- ( ( ph /\ i e. N /\ j e. N ) -> X e. K ) |
||
| mdetr0.i | |- ( ph -> I e. N ) |
||
| Assertion | mdetr0 | |- ( ph -> ( D ` ( i e. N , j e. N |-> if ( i = I , .0. , X ) ) ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetr0.d | |- D = ( N maDet R ) |
|
| 2 | mdetr0.k | |- K = ( Base ` R ) |
|
| 3 | mdetr0.z | |- .0. = ( 0g ` R ) |
|
| 4 | mdetr0.r | |- ( ph -> R e. CRing ) |
|
| 5 | mdetr0.n | |- ( ph -> N e. Fin ) |
|
| 6 | mdetr0.x | |- ( ( ph /\ i e. N /\ j e. N ) -> X e. K ) |
|
| 7 | mdetr0.i | |- ( ph -> I e. N ) |
|
| 8 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 9 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 10 | 4 9 | syl | |- ( ph -> R e. Ring ) |
| 11 | 2 3 | ring0cl | |- ( R e. Ring -> .0. e. K ) |
| 12 | 10 11 | syl | |- ( ph -> .0. e. K ) |
| 13 | 12 | 3ad2ant1 | |- ( ( ph /\ i e. N /\ j e. N ) -> .0. e. K ) |
| 14 | 1 2 8 4 5 13 6 12 7 | mdetrsca2 | |- ( ph -> ( D ` ( i e. N , j e. N |-> if ( i = I , ( .0. ( .r ` R ) .0. ) , X ) ) ) = ( .0. ( .r ` R ) ( D ` ( i e. N , j e. N |-> if ( i = I , .0. , X ) ) ) ) ) |
| 15 | 2 8 3 | ringlz | |- ( ( R e. Ring /\ .0. e. K ) -> ( .0. ( .r ` R ) .0. ) = .0. ) |
| 16 | 10 12 15 | syl2anc | |- ( ph -> ( .0. ( .r ` R ) .0. ) = .0. ) |
| 17 | 16 | ifeq1d | |- ( ph -> if ( i = I , ( .0. ( .r ` R ) .0. ) , X ) = if ( i = I , .0. , X ) ) |
| 18 | 17 | mpoeq3dv | |- ( ph -> ( i e. N , j e. N |-> if ( i = I , ( .0. ( .r ` R ) .0. ) , X ) ) = ( i e. N , j e. N |-> if ( i = I , .0. , X ) ) ) |
| 19 | 18 | fveq2d | |- ( ph -> ( D ` ( i e. N , j e. N |-> if ( i = I , ( .0. ( .r ` R ) .0. ) , X ) ) ) = ( D ` ( i e. N , j e. N |-> if ( i = I , .0. , X ) ) ) ) |
| 20 | eqid | |- ( N Mat R ) = ( N Mat R ) |
|
| 21 | eqid | |- ( Base ` ( N Mat R ) ) = ( Base ` ( N Mat R ) ) |
|
| 22 | 1 20 21 2 | mdetf | |- ( R e. CRing -> D : ( Base ` ( N Mat R ) ) --> K ) |
| 23 | 4 22 | syl | |- ( ph -> D : ( Base ` ( N Mat R ) ) --> K ) |
| 24 | 13 6 | ifcld | |- ( ( ph /\ i e. N /\ j e. N ) -> if ( i = I , .0. , X ) e. K ) |
| 25 | 20 2 21 5 4 24 | matbas2d | |- ( ph -> ( i e. N , j e. N |-> if ( i = I , .0. , X ) ) e. ( Base ` ( N Mat R ) ) ) |
| 26 | 23 25 | ffvelcdmd | |- ( ph -> ( D ` ( i e. N , j e. N |-> if ( i = I , .0. , X ) ) ) e. K ) |
| 27 | 2 8 3 | ringlz | |- ( ( R e. Ring /\ ( D ` ( i e. N , j e. N |-> if ( i = I , .0. , X ) ) ) e. K ) -> ( .0. ( .r ` R ) ( D ` ( i e. N , j e. N |-> if ( i = I , .0. , X ) ) ) ) = .0. ) |
| 28 | 10 26 27 | syl2anc | |- ( ph -> ( .0. ( .r ` R ) ( D ` ( i e. N , j e. N |-> if ( i = I , .0. , X ) ) ) ) = .0. ) |
| 29 | 14 19 28 | 3eqtr3d | |- ( ph -> ( D ` ( i e. N , j e. N |-> if ( i = I , .0. , X ) ) ) = .0. ) |