This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function operation expressed as a mapping, variation of offval2 . (Contributed by SO, 15-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | offval22.a | |- ( ph -> A e. V ) |
|
| offval22.b | |- ( ph -> B e. W ) |
||
| offval22.c | |- ( ( ph /\ x e. A /\ y e. B ) -> C e. X ) |
||
| offval22.d | |- ( ( ph /\ x e. A /\ y e. B ) -> D e. Y ) |
||
| offval22.f | |- ( ph -> F = ( x e. A , y e. B |-> C ) ) |
||
| offval22.g | |- ( ph -> G = ( x e. A , y e. B |-> D ) ) |
||
| Assertion | offval22 | |- ( ph -> ( F oF R G ) = ( x e. A , y e. B |-> ( C R D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval22.a | |- ( ph -> A e. V ) |
|
| 2 | offval22.b | |- ( ph -> B e. W ) |
|
| 3 | offval22.c | |- ( ( ph /\ x e. A /\ y e. B ) -> C e. X ) |
|
| 4 | offval22.d | |- ( ( ph /\ x e. A /\ y e. B ) -> D e. Y ) |
|
| 5 | offval22.f | |- ( ph -> F = ( x e. A , y e. B |-> C ) ) |
|
| 6 | offval22.g | |- ( ph -> G = ( x e. A , y e. B |-> D ) ) |
|
| 7 | 1 2 | xpexd | |- ( ph -> ( A X. B ) e. _V ) |
| 8 | xp1st | |- ( z e. ( A X. B ) -> ( 1st ` z ) e. A ) |
|
| 9 | xp2nd | |- ( z e. ( A X. B ) -> ( 2nd ` z ) e. B ) |
|
| 10 | 8 9 | jca | |- ( z e. ( A X. B ) -> ( ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) ) |
| 11 | fvex | |- ( 2nd ` z ) e. _V |
|
| 12 | fvex | |- ( 1st ` z ) e. _V |
|
| 13 | nfcv | |- F/_ y ( 2nd ` z ) |
|
| 14 | nfcv | |- F/_ x ( 2nd ` z ) |
|
| 15 | nfcv | |- F/_ x ( 1st ` z ) |
|
| 16 | nfv | |- F/ y ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) |
|
| 17 | nfcsb1v | |- F/_ y [_ ( 2nd ` z ) / y ]_ C |
|
| 18 | 17 | nfel1 | |- F/ y [_ ( 2nd ` z ) / y ]_ C e. _V |
| 19 | 16 18 | nfim | |- F/ y ( ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 2nd ` z ) / y ]_ C e. _V ) |
| 20 | nfv | |- F/ x ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) |
|
| 21 | nfcsb1v | |- F/_ x [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C |
|
| 22 | 21 | nfel1 | |- F/ x [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V |
| 23 | 20 22 | nfim | |- F/ x ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V ) |
| 24 | eleq1 | |- ( y = ( 2nd ` z ) -> ( y e. B <-> ( 2nd ` z ) e. B ) ) |
|
| 25 | 24 | 3anbi3d | |- ( y = ( 2nd ` z ) -> ( ( ph /\ x e. A /\ y e. B ) <-> ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) ) ) |
| 26 | csbeq1a | |- ( y = ( 2nd ` z ) -> C = [_ ( 2nd ` z ) / y ]_ C ) |
|
| 27 | 26 | eleq1d | |- ( y = ( 2nd ` z ) -> ( C e. _V <-> [_ ( 2nd ` z ) / y ]_ C e. _V ) ) |
| 28 | 25 27 | imbi12d | |- ( y = ( 2nd ` z ) -> ( ( ( ph /\ x e. A /\ y e. B ) -> C e. _V ) <-> ( ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 2nd ` z ) / y ]_ C e. _V ) ) ) |
| 29 | eleq1 | |- ( x = ( 1st ` z ) -> ( x e. A <-> ( 1st ` z ) e. A ) ) |
|
| 30 | 29 | 3anbi2d | |- ( x = ( 1st ` z ) -> ( ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) <-> ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) ) ) |
| 31 | csbeq1a | |- ( x = ( 1st ` z ) -> [_ ( 2nd ` z ) / y ]_ C = [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C ) |
|
| 32 | 31 | eleq1d | |- ( x = ( 1st ` z ) -> ( [_ ( 2nd ` z ) / y ]_ C e. _V <-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V ) ) |
| 33 | 30 32 | imbi12d | |- ( x = ( 1st ` z ) -> ( ( ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 2nd ` z ) / y ]_ C e. _V ) <-> ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V ) ) ) |
| 34 | 3 | elexd | |- ( ( ph /\ x e. A /\ y e. B ) -> C e. _V ) |
| 35 | 13 14 15 19 23 28 33 34 | vtocl2gf | |- ( ( ( 2nd ` z ) e. _V /\ ( 1st ` z ) e. _V ) -> ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V ) ) |
| 36 | 11 12 35 | mp2an | |- ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V ) |
| 37 | 36 | 3expb | |- ( ( ph /\ ( ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V ) |
| 38 | 10 37 | sylan2 | |- ( ( ph /\ z e. ( A X. B ) ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C e. _V ) |
| 39 | nfcsb1v | |- F/_ y [_ ( 2nd ` z ) / y ]_ D |
|
| 40 | 39 | nfel1 | |- F/ y [_ ( 2nd ` z ) / y ]_ D e. _V |
| 41 | 16 40 | nfim | |- F/ y ( ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 2nd ` z ) / y ]_ D e. _V ) |
| 42 | nfcsb1v | |- F/_ x [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D |
|
| 43 | 42 | nfel1 | |- F/ x [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V |
| 44 | 20 43 | nfim | |- F/ x ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V ) |
| 45 | csbeq1a | |- ( y = ( 2nd ` z ) -> D = [_ ( 2nd ` z ) / y ]_ D ) |
|
| 46 | 45 | eleq1d | |- ( y = ( 2nd ` z ) -> ( D e. _V <-> [_ ( 2nd ` z ) / y ]_ D e. _V ) ) |
| 47 | 25 46 | imbi12d | |- ( y = ( 2nd ` z ) -> ( ( ( ph /\ x e. A /\ y e. B ) -> D e. _V ) <-> ( ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 2nd ` z ) / y ]_ D e. _V ) ) ) |
| 48 | csbeq1a | |- ( x = ( 1st ` z ) -> [_ ( 2nd ` z ) / y ]_ D = [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) |
|
| 49 | 48 | eleq1d | |- ( x = ( 1st ` z ) -> ( [_ ( 2nd ` z ) / y ]_ D e. _V <-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V ) ) |
| 50 | 30 49 | imbi12d | |- ( x = ( 1st ` z ) -> ( ( ( ph /\ x e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 2nd ` z ) / y ]_ D e. _V ) <-> ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V ) ) ) |
| 51 | 4 | elexd | |- ( ( ph /\ x e. A /\ y e. B ) -> D e. _V ) |
| 52 | 13 14 15 41 44 47 50 51 | vtocl2gf | |- ( ( ( 2nd ` z ) e. _V /\ ( 1st ` z ) e. _V ) -> ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V ) ) |
| 53 | 11 12 52 | mp2an | |- ( ( ph /\ ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V ) |
| 54 | 53 | 3expb | |- ( ( ph /\ ( ( 1st ` z ) e. A /\ ( 2nd ` z ) e. B ) ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V ) |
| 55 | 10 54 | sylan2 | |- ( ( ph /\ z e. ( A X. B ) ) -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D e. _V ) |
| 56 | mpompts | |- ( x e. A , y e. B |-> C ) = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C ) |
|
| 57 | 5 56 | eqtrdi | |- ( ph -> F = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C ) ) |
| 58 | mpompts | |- ( x e. A , y e. B |-> D ) = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) |
|
| 59 | 6 58 | eqtrdi | |- ( ph -> G = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) ) |
| 60 | 7 38 55 57 59 | offval2 | |- ( ph -> ( F oF R G ) = ( z e. ( A X. B ) |-> ( [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C R [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) ) ) |
| 61 | csbov12g | |- ( ( 2nd ` z ) e. _V -> [_ ( 2nd ` z ) / y ]_ ( C R D ) = ( [_ ( 2nd ` z ) / y ]_ C R [_ ( 2nd ` z ) / y ]_ D ) ) |
|
| 62 | 61 | csbeq2dv | |- ( ( 2nd ` z ) e. _V -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ ( C R D ) = [_ ( 1st ` z ) / x ]_ ( [_ ( 2nd ` z ) / y ]_ C R [_ ( 2nd ` z ) / y ]_ D ) ) |
| 63 | 11 62 | ax-mp | |- [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ ( C R D ) = [_ ( 1st ` z ) / x ]_ ( [_ ( 2nd ` z ) / y ]_ C R [_ ( 2nd ` z ) / y ]_ D ) |
| 64 | csbov12g | |- ( ( 1st ` z ) e. _V -> [_ ( 1st ` z ) / x ]_ ( [_ ( 2nd ` z ) / y ]_ C R [_ ( 2nd ` z ) / y ]_ D ) = ( [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C R [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) ) |
|
| 65 | 12 64 | ax-mp | |- [_ ( 1st ` z ) / x ]_ ( [_ ( 2nd ` z ) / y ]_ C R [_ ( 2nd ` z ) / y ]_ D ) = ( [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C R [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) |
| 66 | 63 65 | eqtr2i | |- ( [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C R [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) = [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ ( C R D ) |
| 67 | 66 | mpteq2i | |- ( z e. ( A X. B ) |-> ( [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C R [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) ) = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ ( C R D ) ) |
| 68 | mpompts | |- ( x e. A , y e. B |-> ( C R D ) ) = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ ( C R D ) ) |
|
| 69 | 67 68 | eqtr4i | |- ( z e. ( A X. B ) |-> ( [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C R [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ D ) ) = ( x e. A , y e. B |-> ( C R D ) ) |
| 70 | 60 69 | eqtrdi | |- ( ph -> ( F oF R G ) = ( x e. A , y e. B |-> ( C R D ) ) ) |