This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant function is additive for each row (matrices are given explicitly by their entries). (Contributed by SO, 16-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetrlin2.d | |- D = ( N maDet R ) |
|
| mdetrlin2.k | |- K = ( Base ` R ) |
||
| mdetrlin2.p | |- .+ = ( +g ` R ) |
||
| mdetrlin2.r | |- ( ph -> R e. CRing ) |
||
| mdetrlin2.n | |- ( ph -> N e. Fin ) |
||
| mdetrlin2.x | |- ( ( ph /\ i e. N /\ j e. N ) -> X e. K ) |
||
| mdetrlin2.y | |- ( ( ph /\ i e. N /\ j e. N ) -> Y e. K ) |
||
| mdetrlin2.z | |- ( ( ph /\ i e. N /\ j e. N ) -> Z e. K ) |
||
| mdetrlin2.i | |- ( ph -> I e. N ) |
||
| Assertion | mdetrlin2 | |- ( ph -> ( D ` ( i e. N , j e. N |-> if ( i = I , ( X .+ Y ) , Z ) ) ) = ( ( D ` ( i e. N , j e. N |-> if ( i = I , X , Z ) ) ) .+ ( D ` ( i e. N , j e. N |-> if ( i = I , Y , Z ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetrlin2.d | |- D = ( N maDet R ) |
|
| 2 | mdetrlin2.k | |- K = ( Base ` R ) |
|
| 3 | mdetrlin2.p | |- .+ = ( +g ` R ) |
|
| 4 | mdetrlin2.r | |- ( ph -> R e. CRing ) |
|
| 5 | mdetrlin2.n | |- ( ph -> N e. Fin ) |
|
| 6 | mdetrlin2.x | |- ( ( ph /\ i e. N /\ j e. N ) -> X e. K ) |
|
| 7 | mdetrlin2.y | |- ( ( ph /\ i e. N /\ j e. N ) -> Y e. K ) |
|
| 8 | mdetrlin2.z | |- ( ( ph /\ i e. N /\ j e. N ) -> Z e. K ) |
|
| 9 | mdetrlin2.i | |- ( ph -> I e. N ) |
|
| 10 | eqid | |- ( N Mat R ) = ( N Mat R ) |
|
| 11 | eqid | |- ( Base ` ( N Mat R ) ) = ( Base ` ( N Mat R ) ) |
|
| 12 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 13 | 4 12 | syl | |- ( ph -> R e. Ring ) |
| 14 | 13 | 3ad2ant1 | |- ( ( ph /\ i e. N /\ j e. N ) -> R e. Ring ) |
| 15 | 2 3 | ringacl | |- ( ( R e. Ring /\ X e. K /\ Y e. K ) -> ( X .+ Y ) e. K ) |
| 16 | 14 6 7 15 | syl3anc | |- ( ( ph /\ i e. N /\ j e. N ) -> ( X .+ Y ) e. K ) |
| 17 | 16 8 | ifcld | |- ( ( ph /\ i e. N /\ j e. N ) -> if ( i = I , ( X .+ Y ) , Z ) e. K ) |
| 18 | 10 2 11 5 4 17 | matbas2d | |- ( ph -> ( i e. N , j e. N |-> if ( i = I , ( X .+ Y ) , Z ) ) e. ( Base ` ( N Mat R ) ) ) |
| 19 | 6 8 | ifcld | |- ( ( ph /\ i e. N /\ j e. N ) -> if ( i = I , X , Z ) e. K ) |
| 20 | 10 2 11 5 4 19 | matbas2d | |- ( ph -> ( i e. N , j e. N |-> if ( i = I , X , Z ) ) e. ( Base ` ( N Mat R ) ) ) |
| 21 | 7 8 | ifcld | |- ( ( ph /\ i e. N /\ j e. N ) -> if ( i = I , Y , Z ) e. K ) |
| 22 | 10 2 11 5 4 21 | matbas2d | |- ( ph -> ( i e. N , j e. N |-> if ( i = I , Y , Z ) ) e. ( Base ` ( N Mat R ) ) ) |
| 23 | snex | |- { I } e. _V |
|
| 24 | 23 | a1i | |- ( ph -> { I } e. _V ) |
| 25 | 9 | snssd | |- ( ph -> { I } C_ N ) |
| 26 | 25 | 3ad2ant1 | |- ( ( ph /\ i e. { I } /\ j e. N ) -> { I } C_ N ) |
| 27 | simp2 | |- ( ( ph /\ i e. { I } /\ j e. N ) -> i e. { I } ) |
|
| 28 | 26 27 | sseldd | |- ( ( ph /\ i e. { I } /\ j e. N ) -> i e. N ) |
| 29 | 28 6 | syld3an2 | |- ( ( ph /\ i e. { I } /\ j e. N ) -> X e. K ) |
| 30 | 28 7 | syld3an2 | |- ( ( ph /\ i e. { I } /\ j e. N ) -> Y e. K ) |
| 31 | eqidd | |- ( ph -> ( i e. { I } , j e. N |-> X ) = ( i e. { I } , j e. N |-> X ) ) |
|
| 32 | eqidd | |- ( ph -> ( i e. { I } , j e. N |-> Y ) = ( i e. { I } , j e. N |-> Y ) ) |
|
| 33 | 24 5 29 30 31 32 | offval22 | |- ( ph -> ( ( i e. { I } , j e. N |-> X ) oF .+ ( i e. { I } , j e. N |-> Y ) ) = ( i e. { I } , j e. N |-> ( X .+ Y ) ) ) |
| 34 | 33 | eqcomd | |- ( ph -> ( i e. { I } , j e. N |-> ( X .+ Y ) ) = ( ( i e. { I } , j e. N |-> X ) oF .+ ( i e. { I } , j e. N |-> Y ) ) ) |
| 35 | mposnif | |- ( i e. { I } , j e. N |-> if ( i = I , ( X .+ Y ) , Z ) ) = ( i e. { I } , j e. N |-> ( X .+ Y ) ) |
|
| 36 | mposnif | |- ( i e. { I } , j e. N |-> if ( i = I , X , Z ) ) = ( i e. { I } , j e. N |-> X ) |
|
| 37 | mposnif | |- ( i e. { I } , j e. N |-> if ( i = I , Y , Z ) ) = ( i e. { I } , j e. N |-> Y ) |
|
| 38 | 36 37 | oveq12i | |- ( ( i e. { I } , j e. N |-> if ( i = I , X , Z ) ) oF .+ ( i e. { I } , j e. N |-> if ( i = I , Y , Z ) ) ) = ( ( i e. { I } , j e. N |-> X ) oF .+ ( i e. { I } , j e. N |-> Y ) ) |
| 39 | 34 35 38 | 3eqtr4g | |- ( ph -> ( i e. { I } , j e. N |-> if ( i = I , ( X .+ Y ) , Z ) ) = ( ( i e. { I } , j e. N |-> if ( i = I , X , Z ) ) oF .+ ( i e. { I } , j e. N |-> if ( i = I , Y , Z ) ) ) ) |
| 40 | ssid | |- N C_ N |
|
| 41 | resmpo | |- ( ( { I } C_ N /\ N C_ N ) -> ( ( i e. N , j e. N |-> if ( i = I , ( X .+ Y ) , Z ) ) |` ( { I } X. N ) ) = ( i e. { I } , j e. N |-> if ( i = I , ( X .+ Y ) , Z ) ) ) |
|
| 42 | 25 40 41 | sylancl | |- ( ph -> ( ( i e. N , j e. N |-> if ( i = I , ( X .+ Y ) , Z ) ) |` ( { I } X. N ) ) = ( i e. { I } , j e. N |-> if ( i = I , ( X .+ Y ) , Z ) ) ) |
| 43 | resmpo | |- ( ( { I } C_ N /\ N C_ N ) -> ( ( i e. N , j e. N |-> if ( i = I , X , Z ) ) |` ( { I } X. N ) ) = ( i e. { I } , j e. N |-> if ( i = I , X , Z ) ) ) |
|
| 44 | 25 40 43 | sylancl | |- ( ph -> ( ( i e. N , j e. N |-> if ( i = I , X , Z ) ) |` ( { I } X. N ) ) = ( i e. { I } , j e. N |-> if ( i = I , X , Z ) ) ) |
| 45 | resmpo | |- ( ( { I } C_ N /\ N C_ N ) -> ( ( i e. N , j e. N |-> if ( i = I , Y , Z ) ) |` ( { I } X. N ) ) = ( i e. { I } , j e. N |-> if ( i = I , Y , Z ) ) ) |
|
| 46 | 25 40 45 | sylancl | |- ( ph -> ( ( i e. N , j e. N |-> if ( i = I , Y , Z ) ) |` ( { I } X. N ) ) = ( i e. { I } , j e. N |-> if ( i = I , Y , Z ) ) ) |
| 47 | 44 46 | oveq12d | |- ( ph -> ( ( ( i e. N , j e. N |-> if ( i = I , X , Z ) ) |` ( { I } X. N ) ) oF .+ ( ( i e. N , j e. N |-> if ( i = I , Y , Z ) ) |` ( { I } X. N ) ) ) = ( ( i e. { I } , j e. N |-> if ( i = I , X , Z ) ) oF .+ ( i e. { I } , j e. N |-> if ( i = I , Y , Z ) ) ) ) |
| 48 | 39 42 47 | 3eqtr4d | |- ( ph -> ( ( i e. N , j e. N |-> if ( i = I , ( X .+ Y ) , Z ) ) |` ( { I } X. N ) ) = ( ( ( i e. N , j e. N |-> if ( i = I , X , Z ) ) |` ( { I } X. N ) ) oF .+ ( ( i e. N , j e. N |-> if ( i = I , Y , Z ) ) |` ( { I } X. N ) ) ) ) |
| 49 | eldifsni | |- ( i e. ( N \ { I } ) -> i =/= I ) |
|
| 50 | 49 | neneqd | |- ( i e. ( N \ { I } ) -> -. i = I ) |
| 51 | iffalse | |- ( -. i = I -> if ( i = I , ( X .+ Y ) , Z ) = Z ) |
|
| 52 | iffalse | |- ( -. i = I -> if ( i = I , X , Z ) = Z ) |
|
| 53 | 51 52 | eqtr4d | |- ( -. i = I -> if ( i = I , ( X .+ Y ) , Z ) = if ( i = I , X , Z ) ) |
| 54 | 50 53 | syl | |- ( i e. ( N \ { I } ) -> if ( i = I , ( X .+ Y ) , Z ) = if ( i = I , X , Z ) ) |
| 55 | 54 | 3ad2ant2 | |- ( ( ph /\ i e. ( N \ { I } ) /\ j e. N ) -> if ( i = I , ( X .+ Y ) , Z ) = if ( i = I , X , Z ) ) |
| 56 | 55 | mpoeq3dva | |- ( ph -> ( i e. ( N \ { I } ) , j e. N |-> if ( i = I , ( X .+ Y ) , Z ) ) = ( i e. ( N \ { I } ) , j e. N |-> if ( i = I , X , Z ) ) ) |
| 57 | difss | |- ( N \ { I } ) C_ N |
|
| 58 | resmpo | |- ( ( ( N \ { I } ) C_ N /\ N C_ N ) -> ( ( i e. N , j e. N |-> if ( i = I , ( X .+ Y ) , Z ) ) |` ( ( N \ { I } ) X. N ) ) = ( i e. ( N \ { I } ) , j e. N |-> if ( i = I , ( X .+ Y ) , Z ) ) ) |
|
| 59 | 57 40 58 | mp2an | |- ( ( i e. N , j e. N |-> if ( i = I , ( X .+ Y ) , Z ) ) |` ( ( N \ { I } ) X. N ) ) = ( i e. ( N \ { I } ) , j e. N |-> if ( i = I , ( X .+ Y ) , Z ) ) |
| 60 | resmpo | |- ( ( ( N \ { I } ) C_ N /\ N C_ N ) -> ( ( i e. N , j e. N |-> if ( i = I , X , Z ) ) |` ( ( N \ { I } ) X. N ) ) = ( i e. ( N \ { I } ) , j e. N |-> if ( i = I , X , Z ) ) ) |
|
| 61 | 57 40 60 | mp2an | |- ( ( i e. N , j e. N |-> if ( i = I , X , Z ) ) |` ( ( N \ { I } ) X. N ) ) = ( i e. ( N \ { I } ) , j e. N |-> if ( i = I , X , Z ) ) |
| 62 | 56 59 61 | 3eqtr4g | |- ( ph -> ( ( i e. N , j e. N |-> if ( i = I , ( X .+ Y ) , Z ) ) |` ( ( N \ { I } ) X. N ) ) = ( ( i e. N , j e. N |-> if ( i = I , X , Z ) ) |` ( ( N \ { I } ) X. N ) ) ) |
| 63 | iffalse | |- ( -. i = I -> if ( i = I , Y , Z ) = Z ) |
|
| 64 | 51 63 | eqtr4d | |- ( -. i = I -> if ( i = I , ( X .+ Y ) , Z ) = if ( i = I , Y , Z ) ) |
| 65 | 50 64 | syl | |- ( i e. ( N \ { I } ) -> if ( i = I , ( X .+ Y ) , Z ) = if ( i = I , Y , Z ) ) |
| 66 | 65 | 3ad2ant2 | |- ( ( ph /\ i e. ( N \ { I } ) /\ j e. N ) -> if ( i = I , ( X .+ Y ) , Z ) = if ( i = I , Y , Z ) ) |
| 67 | 66 | mpoeq3dva | |- ( ph -> ( i e. ( N \ { I } ) , j e. N |-> if ( i = I , ( X .+ Y ) , Z ) ) = ( i e. ( N \ { I } ) , j e. N |-> if ( i = I , Y , Z ) ) ) |
| 68 | resmpo | |- ( ( ( N \ { I } ) C_ N /\ N C_ N ) -> ( ( i e. N , j e. N |-> if ( i = I , Y , Z ) ) |` ( ( N \ { I } ) X. N ) ) = ( i e. ( N \ { I } ) , j e. N |-> if ( i = I , Y , Z ) ) ) |
|
| 69 | 57 40 68 | mp2an | |- ( ( i e. N , j e. N |-> if ( i = I , Y , Z ) ) |` ( ( N \ { I } ) X. N ) ) = ( i e. ( N \ { I } ) , j e. N |-> if ( i = I , Y , Z ) ) |
| 70 | 67 59 69 | 3eqtr4g | |- ( ph -> ( ( i e. N , j e. N |-> if ( i = I , ( X .+ Y ) , Z ) ) |` ( ( N \ { I } ) X. N ) ) = ( ( i e. N , j e. N |-> if ( i = I , Y , Z ) ) |` ( ( N \ { I } ) X. N ) ) ) |
| 71 | 1 10 11 3 4 18 20 22 9 48 62 70 | mdetrlin | |- ( ph -> ( D ` ( i e. N , j e. N |-> if ( i = I , ( X .+ Y ) , Z ) ) ) = ( ( D ` ( i e. N , j e. N |-> if ( i = I , X , Z ) ) ) .+ ( D ` ( i e. N , j e. N |-> if ( i = I , Y , Z ) ) ) ) ) |