This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of the determinant, see also definition in Lang p. 513. (Contributed by Stefan O'Rear, 9-Jul-2018) (Proof shortened by AV, 23-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetf.d | |- D = ( N maDet R ) |
|
| mdetf.a | |- A = ( N Mat R ) |
||
| mdetf.b | |- B = ( Base ` A ) |
||
| mdetf.k | |- K = ( Base ` R ) |
||
| Assertion | mdetf | |- ( R e. CRing -> D : B --> K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetf.d | |- D = ( N maDet R ) |
|
| 2 | mdetf.a | |- A = ( N Mat R ) |
|
| 3 | mdetf.b | |- B = ( Base ` A ) |
|
| 4 | mdetf.k | |- K = ( Base ` R ) |
|
| 5 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 6 | 5 | adantr | |- ( ( R e. CRing /\ m e. B ) -> R e. Ring ) |
| 7 | ringcmn | |- ( R e. Ring -> R e. CMnd ) |
|
| 8 | 6 7 | syl | |- ( ( R e. CRing /\ m e. B ) -> R e. CMnd ) |
| 9 | 2 3 | matrcl | |- ( m e. B -> ( N e. Fin /\ R e. _V ) ) |
| 10 | 9 | adantl | |- ( ( R e. CRing /\ m e. B ) -> ( N e. Fin /\ R e. _V ) ) |
| 11 | 10 | simpld | |- ( ( R e. CRing /\ m e. B ) -> N e. Fin ) |
| 12 | eqid | |- ( SymGrp ` N ) = ( SymGrp ` N ) |
|
| 13 | eqid | |- ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` N ) ) |
|
| 14 | 12 13 | symgbasfi | |- ( N e. Fin -> ( Base ` ( SymGrp ` N ) ) e. Fin ) |
| 15 | 11 14 | syl | |- ( ( R e. CRing /\ m e. B ) -> ( Base ` ( SymGrp ` N ) ) e. Fin ) |
| 16 | 5 | ad2antrr | |- ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> R e. Ring ) |
| 17 | zrhpsgnmhm | |- ( ( R e. Ring /\ N e. Fin ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
|
| 18 | 6 11 17 | syl2anc | |- ( ( R e. CRing /\ m e. B ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
| 19 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 20 | 19 4 | mgpbas | |- K = ( Base ` ( mulGrp ` R ) ) |
| 21 | 13 20 | mhmf | |- ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> K ) |
| 22 | 18 21 | syl | |- ( ( R e. CRing /\ m e. B ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : ( Base ` ( SymGrp ` N ) ) --> K ) |
| 23 | 22 | ffvelcdmda | |- ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) e. K ) |
| 24 | 19 | crngmgp | |- ( R e. CRing -> ( mulGrp ` R ) e. CMnd ) |
| 25 | 24 | ad2antrr | |- ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( mulGrp ` R ) e. CMnd ) |
| 26 | 11 | adantr | |- ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> N e. Fin ) |
| 27 | 2 4 3 | matbas2i | |- ( m e. B -> m e. ( K ^m ( N X. N ) ) ) |
| 28 | 27 | ad3antlr | |- ( ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> m e. ( K ^m ( N X. N ) ) ) |
| 29 | elmapi | |- ( m e. ( K ^m ( N X. N ) ) -> m : ( N X. N ) --> K ) |
|
| 30 | 28 29 | syl | |- ( ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> m : ( N X. N ) --> K ) |
| 31 | 12 13 | symgbasf | |- ( p e. ( Base ` ( SymGrp ` N ) ) -> p : N --> N ) |
| 32 | 31 | adantl | |- ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> p : N --> N ) |
| 33 | 32 | ffvelcdmda | |- ( ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> ( p ` c ) e. N ) |
| 34 | simpr | |- ( ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> c e. N ) |
|
| 35 | 30 33 34 | fovcdmd | |- ( ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) /\ c e. N ) -> ( ( p ` c ) m c ) e. K ) |
| 36 | 35 | ralrimiva | |- ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> A. c e. N ( ( p ` c ) m c ) e. K ) |
| 37 | 20 25 26 36 | gsummptcl | |- ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) m c ) ) ) e. K ) |
| 38 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 39 | 4 38 | ringcl | |- ( ( R e. Ring /\ ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) e. K /\ ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) m c ) ) ) e. K ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) m c ) ) ) ) e. K ) |
| 40 | 16 23 37 39 | syl3anc | |- ( ( ( R e. CRing /\ m e. B ) /\ p e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) m c ) ) ) ) e. K ) |
| 41 | 40 | ralrimiva | |- ( ( R e. CRing /\ m e. B ) -> A. p e. ( Base ` ( SymGrp ` N ) ) ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) m c ) ) ) ) e. K ) |
| 42 | 4 8 15 41 | gsummptcl | |- ( ( R e. CRing /\ m e. B ) -> ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) m c ) ) ) ) ) ) e. K ) |
| 43 | eqid | |- ( ZRHom ` R ) = ( ZRHom ` R ) |
|
| 44 | eqid | |- ( pmSgn ` N ) = ( pmSgn ` N ) |
|
| 45 | 1 2 3 13 43 44 38 19 | mdetfval | |- D = ( m e. B |-> ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( c e. N |-> ( ( p ` c ) m c ) ) ) ) ) ) ) |
| 46 | 42 45 | fmptd | |- ( R e. CRing -> D : B --> K ) |