This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Determinant is invariant under transposition. Proposition 4.8 in Lang p. 514. (Contributed by Stefan O'Rear, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdettpos.d | |- D = ( N maDet R ) |
|
| mdettpos.a | |- A = ( N Mat R ) |
||
| mdettpos.b | |- B = ( Base ` A ) |
||
| Assertion | mdettpos | |- ( ( R e. CRing /\ M e. B ) -> ( D ` tpos M ) = ( D ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdettpos.d | |- D = ( N maDet R ) |
|
| 2 | mdettpos.a | |- A = ( N Mat R ) |
|
| 3 | mdettpos.b | |- B = ( Base ` A ) |
|
| 4 | ovtpos | |- ( ( p ` x ) tpos M x ) = ( x M ( p ` x ) ) |
|
| 5 | 4 | mpteq2i | |- ( x e. N |-> ( ( p ` x ) tpos M x ) ) = ( x e. N |-> ( x M ( p ` x ) ) ) |
| 6 | 5 | oveq2i | |- ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) tpos M x ) ) ) = ( ( mulGrp ` R ) gsum ( x e. N |-> ( x M ( p ` x ) ) ) ) |
| 7 | 6 | oveq2i | |- ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) tpos M x ) ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( x M ( p ` x ) ) ) ) ) |
| 8 | 7 | mpteq2i | |- ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) tpos M x ) ) ) ) ) = ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( x M ( p ` x ) ) ) ) ) ) |
| 9 | 8 | oveq2i | |- ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) tpos M x ) ) ) ) ) ) = ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( x M ( p ` x ) ) ) ) ) ) ) |
| 10 | 2 3 | mattposcl | |- ( M e. B -> tpos M e. B ) |
| 11 | 10 | adantl | |- ( ( R e. CRing /\ M e. B ) -> tpos M e. B ) |
| 12 | eqid | |- ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` N ) ) |
|
| 13 | eqid | |- ( ZRHom ` R ) = ( ZRHom ` R ) |
|
| 14 | eqid | |- ( pmSgn ` N ) = ( pmSgn ` N ) |
|
| 15 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 16 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 17 | 1 2 3 12 13 14 15 16 | mdetleib | |- ( tpos M e. B -> ( D ` tpos M ) = ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) tpos M x ) ) ) ) ) ) ) |
| 18 | 11 17 | syl | |- ( ( R e. CRing /\ M e. B ) -> ( D ` tpos M ) = ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) tpos M x ) ) ) ) ) ) ) |
| 19 | 1 2 3 12 13 14 15 16 | mdetleib2 | |- ( ( R e. CRing /\ M e. B ) -> ( D ` M ) = ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( x M ( p ` x ) ) ) ) ) ) ) ) |
| 20 | 9 18 19 | 3eqtr4a | |- ( ( R e. CRing /\ M e. B ) -> ( D ` tpos M ) = ( D ` M ) ) |