This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Measurability of a piecewise function: if F is measurable on subsets B and C of its domain, and these pieces make up all of A , then F is measurable on the whole domain. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfres2.1 | |- ( ph -> F : A --> RR ) |
|
| mbfres2.2 | |- ( ph -> ( F |` B ) e. MblFn ) |
||
| mbfres2.3 | |- ( ph -> ( F |` C ) e. MblFn ) |
||
| mbfres2.4 | |- ( ph -> ( B u. C ) = A ) |
||
| Assertion | mbfres2 | |- ( ph -> F e. MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfres2.1 | |- ( ph -> F : A --> RR ) |
|
| 2 | mbfres2.2 | |- ( ph -> ( F |` B ) e. MblFn ) |
|
| 3 | mbfres2.3 | |- ( ph -> ( F |` C ) e. MblFn ) |
|
| 4 | mbfres2.4 | |- ( ph -> ( B u. C ) = A ) |
|
| 5 | 4 | reseq2d | |- ( ph -> ( F |` ( B u. C ) ) = ( F |` A ) ) |
| 6 | ffn | |- ( F : A --> RR -> F Fn A ) |
|
| 7 | fnresdm | |- ( F Fn A -> ( F |` A ) = F ) |
|
| 8 | 1 6 7 | 3syl | |- ( ph -> ( F |` A ) = F ) |
| 9 | 5 8 | eqtr2d | |- ( ph -> F = ( F |` ( B u. C ) ) ) |
| 10 | 9 | adantr | |- ( ( ph /\ x e. ran (,) ) -> F = ( F |` ( B u. C ) ) ) |
| 11 | resundi | |- ( F |` ( B u. C ) ) = ( ( F |` B ) u. ( F |` C ) ) |
|
| 12 | 10 11 | eqtrdi | |- ( ( ph /\ x e. ran (,) ) -> F = ( ( F |` B ) u. ( F |` C ) ) ) |
| 13 | 12 | cnveqd | |- ( ( ph /\ x e. ran (,) ) -> `' F = `' ( ( F |` B ) u. ( F |` C ) ) ) |
| 14 | cnvun | |- `' ( ( F |` B ) u. ( F |` C ) ) = ( `' ( F |` B ) u. `' ( F |` C ) ) |
|
| 15 | 13 14 | eqtrdi | |- ( ( ph /\ x e. ran (,) ) -> `' F = ( `' ( F |` B ) u. `' ( F |` C ) ) ) |
| 16 | 15 | imaeq1d | |- ( ( ph /\ x e. ran (,) ) -> ( `' F " x ) = ( ( `' ( F |` B ) u. `' ( F |` C ) ) " x ) ) |
| 17 | imaundir | |- ( ( `' ( F |` B ) u. `' ( F |` C ) ) " x ) = ( ( `' ( F |` B ) " x ) u. ( `' ( F |` C ) " x ) ) |
|
| 18 | 16 17 | eqtrdi | |- ( ( ph /\ x e. ran (,) ) -> ( `' F " x ) = ( ( `' ( F |` B ) " x ) u. ( `' ( F |` C ) " x ) ) ) |
| 19 | ssun1 | |- B C_ ( B u. C ) |
|
| 20 | 19 4 | sseqtrid | |- ( ph -> B C_ A ) |
| 21 | 1 20 | fssresd | |- ( ph -> ( F |` B ) : B --> RR ) |
| 22 | ismbf | |- ( ( F |` B ) : B --> RR -> ( ( F |` B ) e. MblFn <-> A. x e. ran (,) ( `' ( F |` B ) " x ) e. dom vol ) ) |
|
| 23 | 21 22 | syl | |- ( ph -> ( ( F |` B ) e. MblFn <-> A. x e. ran (,) ( `' ( F |` B ) " x ) e. dom vol ) ) |
| 24 | 2 23 | mpbid | |- ( ph -> A. x e. ran (,) ( `' ( F |` B ) " x ) e. dom vol ) |
| 25 | 24 | r19.21bi | |- ( ( ph /\ x e. ran (,) ) -> ( `' ( F |` B ) " x ) e. dom vol ) |
| 26 | ssun2 | |- C C_ ( B u. C ) |
|
| 27 | 26 4 | sseqtrid | |- ( ph -> C C_ A ) |
| 28 | 1 27 | fssresd | |- ( ph -> ( F |` C ) : C --> RR ) |
| 29 | ismbf | |- ( ( F |` C ) : C --> RR -> ( ( F |` C ) e. MblFn <-> A. x e. ran (,) ( `' ( F |` C ) " x ) e. dom vol ) ) |
|
| 30 | 28 29 | syl | |- ( ph -> ( ( F |` C ) e. MblFn <-> A. x e. ran (,) ( `' ( F |` C ) " x ) e. dom vol ) ) |
| 31 | 3 30 | mpbid | |- ( ph -> A. x e. ran (,) ( `' ( F |` C ) " x ) e. dom vol ) |
| 32 | 31 | r19.21bi | |- ( ( ph /\ x e. ran (,) ) -> ( `' ( F |` C ) " x ) e. dom vol ) |
| 33 | unmbl | |- ( ( ( `' ( F |` B ) " x ) e. dom vol /\ ( `' ( F |` C ) " x ) e. dom vol ) -> ( ( `' ( F |` B ) " x ) u. ( `' ( F |` C ) " x ) ) e. dom vol ) |
|
| 34 | 25 32 33 | syl2anc | |- ( ( ph /\ x e. ran (,) ) -> ( ( `' ( F |` B ) " x ) u. ( `' ( F |` C ) " x ) ) e. dom vol ) |
| 35 | 18 34 | eqeltrd | |- ( ( ph /\ x e. ran (,) ) -> ( `' F " x ) e. dom vol ) |
| 36 | 35 | ralrimiva | |- ( ph -> A. x e. ran (,) ( `' F " x ) e. dom vol ) |
| 37 | ismbf | |- ( F : A --> RR -> ( F e. MblFn <-> A. x e. ran (,) ( `' F " x ) e. dom vol ) ) |
|
| 38 | 1 37 | syl | |- ( ph -> ( F e. MblFn <-> A. x e. ran (,) ( `' F " x ) e. dom vol ) ) |
| 39 | 36 38 | mpbird | |- ( ph -> F e. MblFn ) |