This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of the matrix algebra, see also the statement in Lang p. 505: "Then Mat_n(R) is an algebra over R" . (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | matassa.a | |- A = ( N Mat R ) |
|
| Assertion | matassa | |- ( ( N e. Fin /\ R e. CRing ) -> A e. AssAlg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matassa.a | |- A = ( N Mat R ) |
|
| 2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 3 | 1 2 | matbas2 | |- ( ( N e. Fin /\ R e. CRing ) -> ( ( Base ` R ) ^m ( N X. N ) ) = ( Base ` A ) ) |
| 4 | 1 | matsca2 | |- ( ( N e. Fin /\ R e. CRing ) -> R = ( Scalar ` A ) ) |
| 5 | eqidd | |- ( ( N e. Fin /\ R e. CRing ) -> ( Base ` R ) = ( Base ` R ) ) |
|
| 6 | eqidd | |- ( ( N e. Fin /\ R e. CRing ) -> ( .s ` A ) = ( .s ` A ) ) |
|
| 7 | eqid | |- ( R maMul <. N , N , N >. ) = ( R maMul <. N , N , N >. ) |
|
| 8 | 1 7 | matmulr | |- ( ( N e. Fin /\ R e. CRing ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) |
| 9 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 10 | 1 | matlmod | |- ( ( N e. Fin /\ R e. Ring ) -> A e. LMod ) |
| 11 | 9 10 | sylan2 | |- ( ( N e. Fin /\ R e. CRing ) -> A e. LMod ) |
| 12 | 1 | matring | |- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
| 13 | 9 12 | sylan2 | |- ( ( N e. Fin /\ R e. CRing ) -> A e. Ring ) |
| 14 | 9 | ad2antlr | |- ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. ( Base ` R ) /\ y e. ( ( Base ` R ) ^m ( N X. N ) ) /\ z e. ( ( Base ` R ) ^m ( N X. N ) ) ) ) -> R e. Ring ) |
| 15 | simpll | |- ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. ( Base ` R ) /\ y e. ( ( Base ` R ) ^m ( N X. N ) ) /\ z e. ( ( Base ` R ) ^m ( N X. N ) ) ) ) -> N e. Fin ) |
|
| 16 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 17 | simpr1 | |- ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. ( Base ` R ) /\ y e. ( ( Base ` R ) ^m ( N X. N ) ) /\ z e. ( ( Base ` R ) ^m ( N X. N ) ) ) ) -> x e. ( Base ` R ) ) |
|
| 18 | simpr2 | |- ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. ( Base ` R ) /\ y e. ( ( Base ` R ) ^m ( N X. N ) ) /\ z e. ( ( Base ` R ) ^m ( N X. N ) ) ) ) -> y e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
|
| 19 | simpr3 | |- ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. ( Base ` R ) /\ y e. ( ( Base ` R ) ^m ( N X. N ) ) /\ z e. ( ( Base ` R ) ^m ( N X. N ) ) ) ) -> z e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
|
| 20 | 2 14 7 15 15 15 16 17 18 19 | mamuvs1 | |- ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. ( Base ` R ) /\ y e. ( ( Base ` R ) ^m ( N X. N ) ) /\ z e. ( ( Base ` R ) ^m ( N X. N ) ) ) ) -> ( ( ( ( N X. N ) X. { x } ) oF ( .r ` R ) y ) ( R maMul <. N , N , N >. ) z ) = ( ( ( N X. N ) X. { x } ) oF ( .r ` R ) ( y ( R maMul <. N , N , N >. ) z ) ) ) |
| 21 | 3 | adantr | |- ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. ( Base ` R ) /\ y e. ( ( Base ` R ) ^m ( N X. N ) ) /\ z e. ( ( Base ` R ) ^m ( N X. N ) ) ) ) -> ( ( Base ` R ) ^m ( N X. N ) ) = ( Base ` A ) ) |
| 22 | 18 21 | eleqtrd | |- ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. ( Base ` R ) /\ y e. ( ( Base ` R ) ^m ( N X. N ) ) /\ z e. ( ( Base ` R ) ^m ( N X. N ) ) ) ) -> y e. ( Base ` A ) ) |
| 23 | eqid | |- ( Base ` A ) = ( Base ` A ) |
|
| 24 | eqid | |- ( .s ` A ) = ( .s ` A ) |
|
| 25 | eqid | |- ( N X. N ) = ( N X. N ) |
|
| 26 | 1 23 2 24 16 25 | matvsca2 | |- ( ( x e. ( Base ` R ) /\ y e. ( Base ` A ) ) -> ( x ( .s ` A ) y ) = ( ( ( N X. N ) X. { x } ) oF ( .r ` R ) y ) ) |
| 27 | 17 22 26 | syl2anc | |- ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. ( Base ` R ) /\ y e. ( ( Base ` R ) ^m ( N X. N ) ) /\ z e. ( ( Base ` R ) ^m ( N X. N ) ) ) ) -> ( x ( .s ` A ) y ) = ( ( ( N X. N ) X. { x } ) oF ( .r ` R ) y ) ) |
| 28 | 27 | oveq1d | |- ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. ( Base ` R ) /\ y e. ( ( Base ` R ) ^m ( N X. N ) ) /\ z e. ( ( Base ` R ) ^m ( N X. N ) ) ) ) -> ( ( x ( .s ` A ) y ) ( R maMul <. N , N , N >. ) z ) = ( ( ( ( N X. N ) X. { x } ) oF ( .r ` R ) y ) ( R maMul <. N , N , N >. ) z ) ) |
| 29 | 2 14 7 15 15 15 18 19 | mamucl | |- ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. ( Base ` R ) /\ y e. ( ( Base ` R ) ^m ( N X. N ) ) /\ z e. ( ( Base ` R ) ^m ( N X. N ) ) ) ) -> ( y ( R maMul <. N , N , N >. ) z ) e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 30 | 29 21 | eleqtrd | |- ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. ( Base ` R ) /\ y e. ( ( Base ` R ) ^m ( N X. N ) ) /\ z e. ( ( Base ` R ) ^m ( N X. N ) ) ) ) -> ( y ( R maMul <. N , N , N >. ) z ) e. ( Base ` A ) ) |
| 31 | 1 23 2 24 16 25 | matvsca2 | |- ( ( x e. ( Base ` R ) /\ ( y ( R maMul <. N , N , N >. ) z ) e. ( Base ` A ) ) -> ( x ( .s ` A ) ( y ( R maMul <. N , N , N >. ) z ) ) = ( ( ( N X. N ) X. { x } ) oF ( .r ` R ) ( y ( R maMul <. N , N , N >. ) z ) ) ) |
| 32 | 17 30 31 | syl2anc | |- ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. ( Base ` R ) /\ y e. ( ( Base ` R ) ^m ( N X. N ) ) /\ z e. ( ( Base ` R ) ^m ( N X. N ) ) ) ) -> ( x ( .s ` A ) ( y ( R maMul <. N , N , N >. ) z ) ) = ( ( ( N X. N ) X. { x } ) oF ( .r ` R ) ( y ( R maMul <. N , N , N >. ) z ) ) ) |
| 33 | 20 28 32 | 3eqtr4d | |- ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. ( Base ` R ) /\ y e. ( ( Base ` R ) ^m ( N X. N ) ) /\ z e. ( ( Base ` R ) ^m ( N X. N ) ) ) ) -> ( ( x ( .s ` A ) y ) ( R maMul <. N , N , N >. ) z ) = ( x ( .s ` A ) ( y ( R maMul <. N , N , N >. ) z ) ) ) |
| 34 | simplr | |- ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. ( Base ` R ) /\ y e. ( ( Base ` R ) ^m ( N X. N ) ) /\ z e. ( ( Base ` R ) ^m ( N X. N ) ) ) ) -> R e. CRing ) |
|
| 35 | 34 2 16 7 15 15 15 18 17 19 | mamuvs2 | |- ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. ( Base ` R ) /\ y e. ( ( Base ` R ) ^m ( N X. N ) ) /\ z e. ( ( Base ` R ) ^m ( N X. N ) ) ) ) -> ( y ( R maMul <. N , N , N >. ) ( ( ( N X. N ) X. { x } ) oF ( .r ` R ) z ) ) = ( ( ( N X. N ) X. { x } ) oF ( .r ` R ) ( y ( R maMul <. N , N , N >. ) z ) ) ) |
| 36 | 19 21 | eleqtrd | |- ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. ( Base ` R ) /\ y e. ( ( Base ` R ) ^m ( N X. N ) ) /\ z e. ( ( Base ` R ) ^m ( N X. N ) ) ) ) -> z e. ( Base ` A ) ) |
| 37 | 1 23 2 24 16 25 | matvsca2 | |- ( ( x e. ( Base ` R ) /\ z e. ( Base ` A ) ) -> ( x ( .s ` A ) z ) = ( ( ( N X. N ) X. { x } ) oF ( .r ` R ) z ) ) |
| 38 | 17 36 37 | syl2anc | |- ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. ( Base ` R ) /\ y e. ( ( Base ` R ) ^m ( N X. N ) ) /\ z e. ( ( Base ` R ) ^m ( N X. N ) ) ) ) -> ( x ( .s ` A ) z ) = ( ( ( N X. N ) X. { x } ) oF ( .r ` R ) z ) ) |
| 39 | 38 | oveq2d | |- ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. ( Base ` R ) /\ y e. ( ( Base ` R ) ^m ( N X. N ) ) /\ z e. ( ( Base ` R ) ^m ( N X. N ) ) ) ) -> ( y ( R maMul <. N , N , N >. ) ( x ( .s ` A ) z ) ) = ( y ( R maMul <. N , N , N >. ) ( ( ( N X. N ) X. { x } ) oF ( .r ` R ) z ) ) ) |
| 40 | 35 39 32 | 3eqtr4d | |- ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. ( Base ` R ) /\ y e. ( ( Base ` R ) ^m ( N X. N ) ) /\ z e. ( ( Base ` R ) ^m ( N X. N ) ) ) ) -> ( y ( R maMul <. N , N , N >. ) ( x ( .s ` A ) z ) ) = ( x ( .s ` A ) ( y ( R maMul <. N , N , N >. ) z ) ) ) |
| 41 | 3 4 5 6 8 11 13 33 40 | isassad | |- ( ( N e. Fin /\ R e. CRing ) -> A e. AssAlg ) |