This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The matrix ring is a linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | matlmod.a | |- A = ( N Mat R ) |
|
| Assertion | matlmod | |- ( ( N e. Fin /\ R e. Ring ) -> A e. LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matlmod.a | |- A = ( N Mat R ) |
|
| 2 | sqxpexg | |- ( N e. Fin -> ( N X. N ) e. _V ) |
|
| 3 | eqid | |- ( R freeLMod ( N X. N ) ) = ( R freeLMod ( N X. N ) ) |
|
| 4 | 3 | frlmlmod | |- ( ( R e. Ring /\ ( N X. N ) e. _V ) -> ( R freeLMod ( N X. N ) ) e. LMod ) |
| 5 | 4 | ancoms | |- ( ( ( N X. N ) e. _V /\ R e. Ring ) -> ( R freeLMod ( N X. N ) ) e. LMod ) |
| 6 | 2 5 | sylan | |- ( ( N e. Fin /\ R e. Ring ) -> ( R freeLMod ( N X. N ) ) e. LMod ) |
| 7 | eqidd | |- ( ( N e. Fin /\ R e. Ring ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` ( R freeLMod ( N X. N ) ) ) ) |
|
| 8 | 1 3 | matbas | |- ( ( N e. Fin /\ R e. Ring ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) |
| 9 | 1 3 | matplusg | |- ( ( N e. Fin /\ R e. Ring ) -> ( +g ` ( R freeLMod ( N X. N ) ) ) = ( +g ` A ) ) |
| 10 | 9 | oveqdr | |- ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. ( Base ` ( R freeLMod ( N X. N ) ) ) /\ y e. ( Base ` ( R freeLMod ( N X. N ) ) ) ) ) -> ( x ( +g ` ( R freeLMod ( N X. N ) ) ) y ) = ( x ( +g ` A ) y ) ) |
| 11 | eqidd | |- ( ( N e. Fin /\ R e. Ring ) -> ( Scalar ` ( R freeLMod ( N X. N ) ) ) = ( Scalar ` ( R freeLMod ( N X. N ) ) ) ) |
|
| 12 | 1 3 | matsca | |- ( ( N e. Fin /\ R e. Ring ) -> ( Scalar ` ( R freeLMod ( N X. N ) ) ) = ( Scalar ` A ) ) |
| 13 | eqid | |- ( Base ` ( Scalar ` ( R freeLMod ( N X. N ) ) ) ) = ( Base ` ( Scalar ` ( R freeLMod ( N X. N ) ) ) ) |
|
| 14 | 1 3 | matvsca | |- ( ( N e. Fin /\ R e. Ring ) -> ( .s ` ( R freeLMod ( N X. N ) ) ) = ( .s ` A ) ) |
| 15 | 14 | oveqdr | |- ( ( ( N e. Fin /\ R e. Ring ) /\ ( x e. ( Base ` ( Scalar ` ( R freeLMod ( N X. N ) ) ) ) /\ y e. ( Base ` ( R freeLMod ( N X. N ) ) ) ) ) -> ( x ( .s ` ( R freeLMod ( N X. N ) ) ) y ) = ( x ( .s ` A ) y ) ) |
| 16 | 7 8 10 11 12 13 15 | lmodpropd | |- ( ( N e. Fin /\ R e. Ring ) -> ( ( R freeLMod ( N X. N ) ) e. LMod <-> A e. LMod ) ) |
| 17 | 6 16 | mpbid | |- ( ( N e. Fin /\ R e. Ring ) -> A e. LMod ) |