This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the matrix ring as a set exponential. (Contributed by Stefan O'Rear, 5-Sep-2015) (Proof shortened by AV, 16-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matbas2.a | |- A = ( N Mat R ) |
|
| matbas2.k | |- K = ( Base ` R ) |
||
| Assertion | matbas2 | |- ( ( N e. Fin /\ R e. V ) -> ( K ^m ( N X. N ) ) = ( Base ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matbas2.a | |- A = ( N Mat R ) |
|
| 2 | matbas2.k | |- K = ( Base ` R ) |
|
| 3 | xpfi | |- ( ( N e. Fin /\ N e. Fin ) -> ( N X. N ) e. Fin ) |
|
| 4 | 3 | anidms | |- ( N e. Fin -> ( N X. N ) e. Fin ) |
| 5 | 4 | anim1ci | |- ( ( N e. Fin /\ R e. V ) -> ( R e. V /\ ( N X. N ) e. Fin ) ) |
| 6 | eqid | |- ( R freeLMod ( N X. N ) ) = ( R freeLMod ( N X. N ) ) |
|
| 7 | 6 2 | frlmfibas | |- ( ( R e. V /\ ( N X. N ) e. Fin ) -> ( K ^m ( N X. N ) ) = ( Base ` ( R freeLMod ( N X. N ) ) ) ) |
| 8 | 5 7 | syl | |- ( ( N e. Fin /\ R e. V ) -> ( K ^m ( N X. N ) ) = ( Base ` ( R freeLMod ( N X. N ) ) ) ) |
| 9 | 1 6 | matbas | |- ( ( N e. Fin /\ R e. V ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) |
| 10 | 8 9 | eqtrd | |- ( ( N e. Fin /\ R e. V ) -> ( K ^m ( N X. N ) ) = ( Base ` A ) ) |