This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication in the matrix ring is cell-wise. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matvsca2.a | |- A = ( N Mat R ) |
|
| matvsca2.b | |- B = ( Base ` A ) |
||
| matvsca2.k | |- K = ( Base ` R ) |
||
| matvsca2.v | |- .x. = ( .s ` A ) |
||
| matvsca2.t | |- .X. = ( .r ` R ) |
||
| matvsca2.c | |- C = ( N X. N ) |
||
| Assertion | matvsca2 | |- ( ( X e. K /\ Y e. B ) -> ( X .x. Y ) = ( ( C X. { X } ) oF .X. Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matvsca2.a | |- A = ( N Mat R ) |
|
| 2 | matvsca2.b | |- B = ( Base ` A ) |
|
| 3 | matvsca2.k | |- K = ( Base ` R ) |
|
| 4 | matvsca2.v | |- .x. = ( .s ` A ) |
|
| 5 | matvsca2.t | |- .X. = ( .r ` R ) |
|
| 6 | matvsca2.c | |- C = ( N X. N ) |
|
| 7 | 1 2 | matrcl | |- ( Y e. B -> ( N e. Fin /\ R e. _V ) ) |
| 8 | 7 | adantl | |- ( ( X e. K /\ Y e. B ) -> ( N e. Fin /\ R e. _V ) ) |
| 9 | eqid | |- ( R freeLMod ( N X. N ) ) = ( R freeLMod ( N X. N ) ) |
|
| 10 | 1 9 | matvsca | |- ( ( N e. Fin /\ R e. _V ) -> ( .s ` ( R freeLMod ( N X. N ) ) ) = ( .s ` A ) ) |
| 11 | 8 10 | syl | |- ( ( X e. K /\ Y e. B ) -> ( .s ` ( R freeLMod ( N X. N ) ) ) = ( .s ` A ) ) |
| 12 | 11 4 | eqtr4di | |- ( ( X e. K /\ Y e. B ) -> ( .s ` ( R freeLMod ( N X. N ) ) ) = .x. ) |
| 13 | 12 | oveqd | |- ( ( X e. K /\ Y e. B ) -> ( X ( .s ` ( R freeLMod ( N X. N ) ) ) Y ) = ( X .x. Y ) ) |
| 14 | eqid | |- ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` ( R freeLMod ( N X. N ) ) ) |
|
| 15 | 8 | simpld | |- ( ( X e. K /\ Y e. B ) -> N e. Fin ) |
| 16 | xpfi | |- ( ( N e. Fin /\ N e. Fin ) -> ( N X. N ) e. Fin ) |
|
| 17 | 15 15 16 | syl2anc | |- ( ( X e. K /\ Y e. B ) -> ( N X. N ) e. Fin ) |
| 18 | simpl | |- ( ( X e. K /\ Y e. B ) -> X e. K ) |
|
| 19 | simpr | |- ( ( X e. K /\ Y e. B ) -> Y e. B ) |
|
| 20 | 1 9 | matbas | |- ( ( N e. Fin /\ R e. _V ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) |
| 21 | 8 20 | syl | |- ( ( X e. K /\ Y e. B ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) |
| 22 | 21 2 | eqtr4di | |- ( ( X e. K /\ Y e. B ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = B ) |
| 23 | 19 22 | eleqtrrd | |- ( ( X e. K /\ Y e. B ) -> Y e. ( Base ` ( R freeLMod ( N X. N ) ) ) ) |
| 24 | eqid | |- ( .s ` ( R freeLMod ( N X. N ) ) ) = ( .s ` ( R freeLMod ( N X. N ) ) ) |
|
| 25 | 9 14 3 17 18 23 24 5 | frlmvscafval | |- ( ( X e. K /\ Y e. B ) -> ( X ( .s ` ( R freeLMod ( N X. N ) ) ) Y ) = ( ( ( N X. N ) X. { X } ) oF .X. Y ) ) |
| 26 | 6 | xpeq1i | |- ( C X. { X } ) = ( ( N X. N ) X. { X } ) |
| 27 | 26 | oveq1i | |- ( ( C X. { X } ) oF .X. Y ) = ( ( ( N X. N ) X. { X } ) oF .X. Y ) |
| 28 | 25 27 | eqtr4di | |- ( ( X e. K /\ Y e. B ) -> ( X ( .s ` ( R freeLMod ( N X. N ) ) ) Y ) = ( ( C X. { X } ) oF .X. Y ) ) |
| 29 | 13 28 | eqtr3d | |- ( ( X e. K /\ Y e. B ) -> ( X .x. Y ) = ( ( C X. { X } ) oF .X. Y ) ) |