This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication in the matrix ring for a single cell of a matrix. (Contributed by AV, 17-Nov-2019) (Revised by AV, 3-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matmulcell.a | |- A = ( N Mat R ) |
|
| matmulcell.b | |- B = ( Base ` A ) |
||
| matmulcell.m | |- .X. = ( .r ` A ) |
||
| Assertion | matmulcell | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( I ( X .X. Y ) J ) = ( R gsum ( j e. N |-> ( ( I X j ) ( .r ` R ) ( j Y J ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matmulcell.a | |- A = ( N Mat R ) |
|
| 2 | matmulcell.b | |- B = ( Base ` A ) |
|
| 3 | matmulcell.m | |- .X. = ( .r ` A ) |
|
| 4 | 1 2 | matrcl | |- ( X e. B -> ( N e. Fin /\ R e. _V ) ) |
| 5 | eqid | |- ( R maMul <. N , N , N >. ) = ( R maMul <. N , N , N >. ) |
|
| 6 | 1 5 | matmulr | |- ( ( N e. Fin /\ R e. _V ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) |
| 7 | 3 6 | eqtr4id | |- ( ( N e. Fin /\ R e. _V ) -> .X. = ( R maMul <. N , N , N >. ) ) |
| 8 | 7 | a1d | |- ( ( N e. Fin /\ R e. _V ) -> ( R e. Ring -> .X. = ( R maMul <. N , N , N >. ) ) ) |
| 9 | 4 8 | syl | |- ( X e. B -> ( R e. Ring -> .X. = ( R maMul <. N , N , N >. ) ) ) |
| 10 | 9 | adantr | |- ( ( X e. B /\ Y e. B ) -> ( R e. Ring -> .X. = ( R maMul <. N , N , N >. ) ) ) |
| 11 | 10 | impcom | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) ) -> .X. = ( R maMul <. N , N , N >. ) ) |
| 12 | 11 | 3adant3 | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> .X. = ( R maMul <. N , N , N >. ) ) |
| 13 | 12 | oveqd | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( X .X. Y ) = ( X ( R maMul <. N , N , N >. ) Y ) ) |
| 14 | 13 | oveqd | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( I ( X .X. Y ) J ) = ( I ( X ( R maMul <. N , N , N >. ) Y ) J ) ) |
| 15 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 16 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 17 | simp1 | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> R e. Ring ) |
|
| 18 | 4 | simpld | |- ( X e. B -> N e. Fin ) |
| 19 | 18 | adantr | |- ( ( X e. B /\ Y e. B ) -> N e. Fin ) |
| 20 | 19 | 3ad2ant2 | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> N e. Fin ) |
| 21 | 1 15 2 | matbas2i | |- ( X e. B -> X e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 22 | 21 | adantr | |- ( ( X e. B /\ Y e. B ) -> X e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 23 | 22 | 3ad2ant2 | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> X e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 24 | 1 15 2 | matbas2i | |- ( Y e. B -> Y e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 25 | 24 | adantl | |- ( ( X e. B /\ Y e. B ) -> Y e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 26 | 25 | 3ad2ant2 | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> Y e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 27 | simp3l | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> I e. N ) |
|
| 28 | simp3r | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> J e. N ) |
|
| 29 | 5 15 16 17 20 20 20 23 26 27 28 | mamufv | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( I ( X ( R maMul <. N , N , N >. ) Y ) J ) = ( R gsum ( j e. N |-> ( ( I X j ) ( .r ` R ) ( j Y J ) ) ) ) ) |
| 30 | 14 29 | eqtrd | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B ) /\ ( I e. N /\ J e. N ) ) -> ( I ( X .X. Y ) J ) = ( R gsum ( j e. N |-> ( ( I X j ) ( .r ` R ) ( j Y J ) ) ) ) ) |