This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalars of the matrix ring are the underlying ring. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | matsca2.a | |- A = ( N Mat R ) |
|
| Assertion | matsca2 | |- ( ( N e. Fin /\ R e. V ) -> R = ( Scalar ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matsca2.a | |- A = ( N Mat R ) |
|
| 2 | xpfi | |- ( ( N e. Fin /\ N e. Fin ) -> ( N X. N ) e. Fin ) |
|
| 3 | 2 | anidms | |- ( N e. Fin -> ( N X. N ) e. Fin ) |
| 4 | eqid | |- ( R freeLMod ( N X. N ) ) = ( R freeLMod ( N X. N ) ) |
|
| 5 | 4 | frlmsca | |- ( ( R e. V /\ ( N X. N ) e. Fin ) -> R = ( Scalar ` ( R freeLMod ( N X. N ) ) ) ) |
| 6 | 5 | ancoms | |- ( ( ( N X. N ) e. Fin /\ R e. V ) -> R = ( Scalar ` ( R freeLMod ( N X. N ) ) ) ) |
| 7 | 3 6 | sylan | |- ( ( N e. Fin /\ R e. V ) -> R = ( Scalar ` ( R freeLMod ( N X. N ) ) ) ) |
| 8 | 1 4 | matsca | |- ( ( N e. Fin /\ R e. V ) -> ( Scalar ` ( R freeLMod ( N X. N ) ) ) = ( Scalar ` A ) ) |
| 9 | 7 8 | eqtrd | |- ( ( N e. Fin /\ R e. V ) -> R = ( Scalar ` A ) ) |