This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity matrix (as operation in maps-to notation) is a right identity (for any matrix with the same number of columns). (Contributed by Stefan O'Rear, 3-Sep-2015) (Proof shortened by AV, 22-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mamumat1cl.b | |- B = ( Base ` R ) |
|
| mamumat1cl.r | |- ( ph -> R e. Ring ) |
||
| mamumat1cl.o | |- .1. = ( 1r ` R ) |
||
| mamumat1cl.z | |- .0. = ( 0g ` R ) |
||
| mamumat1cl.i | |- I = ( i e. M , j e. M |-> if ( i = j , .1. , .0. ) ) |
||
| mamumat1cl.m | |- ( ph -> M e. Fin ) |
||
| mamulid.n | |- ( ph -> N e. Fin ) |
||
| mamurid.f | |- F = ( R maMul <. N , M , M >. ) |
||
| mamurid.x | |- ( ph -> X e. ( B ^m ( N X. M ) ) ) |
||
| Assertion | mamurid | |- ( ph -> ( X F I ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamumat1cl.b | |- B = ( Base ` R ) |
|
| 2 | mamumat1cl.r | |- ( ph -> R e. Ring ) |
|
| 3 | mamumat1cl.o | |- .1. = ( 1r ` R ) |
|
| 4 | mamumat1cl.z | |- .0. = ( 0g ` R ) |
|
| 5 | mamumat1cl.i | |- I = ( i e. M , j e. M |-> if ( i = j , .1. , .0. ) ) |
|
| 6 | mamumat1cl.m | |- ( ph -> M e. Fin ) |
|
| 7 | mamulid.n | |- ( ph -> N e. Fin ) |
|
| 8 | mamurid.f | |- F = ( R maMul <. N , M , M >. ) |
|
| 9 | mamurid.x | |- ( ph -> X e. ( B ^m ( N X. M ) ) ) |
|
| 10 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 11 | 2 | adantr | |- ( ( ph /\ ( l e. N /\ m e. M ) ) -> R e. Ring ) |
| 12 | 7 | adantr | |- ( ( ph /\ ( l e. N /\ m e. M ) ) -> N e. Fin ) |
| 13 | 6 | adantr | |- ( ( ph /\ ( l e. N /\ m e. M ) ) -> M e. Fin ) |
| 14 | 9 | adantr | |- ( ( ph /\ ( l e. N /\ m e. M ) ) -> X e. ( B ^m ( N X. M ) ) ) |
| 15 | 1 2 3 4 5 6 | mamumat1cl | |- ( ph -> I e. ( B ^m ( M X. M ) ) ) |
| 16 | 15 | adantr | |- ( ( ph /\ ( l e. N /\ m e. M ) ) -> I e. ( B ^m ( M X. M ) ) ) |
| 17 | simprl | |- ( ( ph /\ ( l e. N /\ m e. M ) ) -> l e. N ) |
|
| 18 | simprr | |- ( ( ph /\ ( l e. N /\ m e. M ) ) -> m e. M ) |
|
| 19 | 8 1 10 11 12 13 13 14 16 17 18 | mamufv | |- ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( l ( X F I ) m ) = ( R gsum ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) ) ) |
| 20 | ringmnd | |- ( R e. Ring -> R e. Mnd ) |
|
| 21 | 11 20 | syl | |- ( ( ph /\ ( l e. N /\ m e. M ) ) -> R e. Mnd ) |
| 22 | 2 | ad2antrr | |- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> R e. Ring ) |
| 23 | elmapi | |- ( X e. ( B ^m ( N X. M ) ) -> X : ( N X. M ) --> B ) |
|
| 24 | 9 23 | syl | |- ( ph -> X : ( N X. M ) --> B ) |
| 25 | 24 | ad2antrr | |- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> X : ( N X. M ) --> B ) |
| 26 | simplrl | |- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> l e. N ) |
|
| 27 | simpr | |- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> k e. M ) |
|
| 28 | 25 26 27 | fovcdmd | |- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> ( l X k ) e. B ) |
| 29 | elmapi | |- ( I e. ( B ^m ( M X. M ) ) -> I : ( M X. M ) --> B ) |
|
| 30 | 15 29 | syl | |- ( ph -> I : ( M X. M ) --> B ) |
| 31 | 30 | ad2antrr | |- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> I : ( M X. M ) --> B ) |
| 32 | simplrr | |- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> m e. M ) |
|
| 33 | 31 27 32 | fovcdmd | |- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> ( k I m ) e. B ) |
| 34 | 1 10 | ringcl | |- ( ( R e. Ring /\ ( l X k ) e. B /\ ( k I m ) e. B ) -> ( ( l X k ) ( .r ` R ) ( k I m ) ) e. B ) |
| 35 | 22 28 33 34 | syl3anc | |- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> ( ( l X k ) ( .r ` R ) ( k I m ) ) e. B ) |
| 36 | 35 | fmpttd | |- ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) : M --> B ) |
| 37 | simp2 | |- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> k e. M ) |
|
| 38 | 32 | 3adant3 | |- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> m e. M ) |
| 39 | 1 2 3 4 5 6 | mat1comp | |- ( ( k e. M /\ m e. M ) -> ( k I m ) = if ( k = m , .1. , .0. ) ) |
| 40 | 37 38 39 | syl2anc | |- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> ( k I m ) = if ( k = m , .1. , .0. ) ) |
| 41 | ifnefalse | |- ( k =/= m -> if ( k = m , .1. , .0. ) = .0. ) |
|
| 42 | 41 | 3ad2ant3 | |- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> if ( k = m , .1. , .0. ) = .0. ) |
| 43 | 40 42 | eqtrd | |- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> ( k I m ) = .0. ) |
| 44 | 43 | oveq2d | |- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> ( ( l X k ) ( .r ` R ) ( k I m ) ) = ( ( l X k ) ( .r ` R ) .0. ) ) |
| 45 | 1 10 4 | ringrz | |- ( ( R e. Ring /\ ( l X k ) e. B ) -> ( ( l X k ) ( .r ` R ) .0. ) = .0. ) |
| 46 | 22 28 45 | syl2anc | |- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M ) -> ( ( l X k ) ( .r ` R ) .0. ) = .0. ) |
| 47 | 46 | 3adant3 | |- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> ( ( l X k ) ( .r ` R ) .0. ) = .0. ) |
| 48 | 44 47 | eqtrd | |- ( ( ( ph /\ ( l e. N /\ m e. M ) ) /\ k e. M /\ k =/= m ) -> ( ( l X k ) ( .r ` R ) ( k I m ) ) = .0. ) |
| 49 | 48 13 | suppsssn | |- ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) supp .0. ) C_ { m } ) |
| 50 | 1 4 21 13 18 36 49 | gsumpt | |- ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( R gsum ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) ) = ( ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) ` m ) ) |
| 51 | oveq2 | |- ( k = m -> ( l X k ) = ( l X m ) ) |
|
| 52 | oveq1 | |- ( k = m -> ( k I m ) = ( m I m ) ) |
|
| 53 | 51 52 | oveq12d | |- ( k = m -> ( ( l X k ) ( .r ` R ) ( k I m ) ) = ( ( l X m ) ( .r ` R ) ( m I m ) ) ) |
| 54 | eqid | |- ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) = ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) |
|
| 55 | ovex | |- ( ( l X m ) ( .r ` R ) ( m I m ) ) e. _V |
|
| 56 | 53 54 55 | fvmpt | |- ( m e. M -> ( ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) ` m ) = ( ( l X m ) ( .r ` R ) ( m I m ) ) ) |
| 57 | 56 | ad2antll | |- ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) ` m ) = ( ( l X m ) ( .r ` R ) ( m I m ) ) ) |
| 58 | equequ1 | |- ( i = m -> ( i = j <-> m = j ) ) |
|
| 59 | 58 | ifbid | |- ( i = m -> if ( i = j , .1. , .0. ) = if ( m = j , .1. , .0. ) ) |
| 60 | equequ2 | |- ( j = m -> ( m = j <-> m = m ) ) |
|
| 61 | 60 | ifbid | |- ( j = m -> if ( m = j , .1. , .0. ) = if ( m = m , .1. , .0. ) ) |
| 62 | eqid | |- m = m |
|
| 63 | 62 | iftruei | |- if ( m = m , .1. , .0. ) = .1. |
| 64 | 61 63 | eqtrdi | |- ( j = m -> if ( m = j , .1. , .0. ) = .1. ) |
| 65 | 3 | fvexi | |- .1. e. _V |
| 66 | 59 64 5 65 | ovmpo | |- ( ( m e. M /\ m e. M ) -> ( m I m ) = .1. ) |
| 67 | 66 | anidms | |- ( m e. M -> ( m I m ) = .1. ) |
| 68 | 67 | oveq2d | |- ( m e. M -> ( ( l X m ) ( .r ` R ) ( m I m ) ) = ( ( l X m ) ( .r ` R ) .1. ) ) |
| 69 | 68 | ad2antll | |- ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( ( l X m ) ( .r ` R ) ( m I m ) ) = ( ( l X m ) ( .r ` R ) .1. ) ) |
| 70 | 24 | fovcdmda | |- ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( l X m ) e. B ) |
| 71 | 1 10 3 | ringridm | |- ( ( R e. Ring /\ ( l X m ) e. B ) -> ( ( l X m ) ( .r ` R ) .1. ) = ( l X m ) ) |
| 72 | 11 70 71 | syl2anc | |- ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( ( l X m ) ( .r ` R ) .1. ) = ( l X m ) ) |
| 73 | 57 69 72 | 3eqtrd | |- ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( ( k e. M |-> ( ( l X k ) ( .r ` R ) ( k I m ) ) ) ` m ) = ( l X m ) ) |
| 74 | 19 50 73 | 3eqtrd | |- ( ( ph /\ ( l e. N /\ m e. M ) ) -> ( l ( X F I ) m ) = ( l X m ) ) |
| 75 | 74 | ralrimivva | |- ( ph -> A. l e. N A. m e. M ( l ( X F I ) m ) = ( l X m ) ) |
| 76 | 1 2 8 7 6 6 9 15 | mamucl | |- ( ph -> ( X F I ) e. ( B ^m ( N X. M ) ) ) |
| 77 | elmapi | |- ( ( X F I ) e. ( B ^m ( N X. M ) ) -> ( X F I ) : ( N X. M ) --> B ) |
|
| 78 | 76 77 | syl | |- ( ph -> ( X F I ) : ( N X. M ) --> B ) |
| 79 | 78 | ffnd | |- ( ph -> ( X F I ) Fn ( N X. M ) ) |
| 80 | 24 | ffnd | |- ( ph -> X Fn ( N X. M ) ) |
| 81 | eqfnov2 | |- ( ( ( X F I ) Fn ( N X. M ) /\ X Fn ( N X. M ) ) -> ( ( X F I ) = X <-> A. l e. N A. m e. M ( l ( X F I ) m ) = ( l X m ) ) ) |
|
| 82 | 79 80 81 | syl2anc | |- ( ph -> ( ( X F I ) = X <-> A. l e. N A. m e. M ( l ( X F I ) m ) = ( l X m ) ) ) |
| 83 | 75 82 | mpbird | |- ( ph -> ( X F I ) = X ) |