This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity matrix (as operation in maps-to notation) is a left identity (for any matrix with the same number of rows). (Contributed by Stefan O'Rear, 3-Sep-2015) (Proof shortened by AV, 22-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mamumat1cl.b | |- B = ( Base ` R ) |
|
| mamumat1cl.r | |- ( ph -> R e. Ring ) |
||
| mamumat1cl.o | |- .1. = ( 1r ` R ) |
||
| mamumat1cl.z | |- .0. = ( 0g ` R ) |
||
| mamumat1cl.i | |- I = ( i e. M , j e. M |-> if ( i = j , .1. , .0. ) ) |
||
| mamumat1cl.m | |- ( ph -> M e. Fin ) |
||
| mamulid.n | |- ( ph -> N e. Fin ) |
||
| mamulid.f | |- F = ( R maMul <. M , M , N >. ) |
||
| mamulid.x | |- ( ph -> X e. ( B ^m ( M X. N ) ) ) |
||
| Assertion | mamulid | |- ( ph -> ( I F X ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamumat1cl.b | |- B = ( Base ` R ) |
|
| 2 | mamumat1cl.r | |- ( ph -> R e. Ring ) |
|
| 3 | mamumat1cl.o | |- .1. = ( 1r ` R ) |
|
| 4 | mamumat1cl.z | |- .0. = ( 0g ` R ) |
|
| 5 | mamumat1cl.i | |- I = ( i e. M , j e. M |-> if ( i = j , .1. , .0. ) ) |
|
| 6 | mamumat1cl.m | |- ( ph -> M e. Fin ) |
|
| 7 | mamulid.n | |- ( ph -> N e. Fin ) |
|
| 8 | mamulid.f | |- F = ( R maMul <. M , M , N >. ) |
|
| 9 | mamulid.x | |- ( ph -> X e. ( B ^m ( M X. N ) ) ) |
|
| 10 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 11 | 2 | adantr | |- ( ( ph /\ ( l e. M /\ k e. N ) ) -> R e. Ring ) |
| 12 | 6 | adantr | |- ( ( ph /\ ( l e. M /\ k e. N ) ) -> M e. Fin ) |
| 13 | 7 | adantr | |- ( ( ph /\ ( l e. M /\ k e. N ) ) -> N e. Fin ) |
| 14 | 1 2 3 4 5 6 | mamumat1cl | |- ( ph -> I e. ( B ^m ( M X. M ) ) ) |
| 15 | 14 | adantr | |- ( ( ph /\ ( l e. M /\ k e. N ) ) -> I e. ( B ^m ( M X. M ) ) ) |
| 16 | 9 | adantr | |- ( ( ph /\ ( l e. M /\ k e. N ) ) -> X e. ( B ^m ( M X. N ) ) ) |
| 17 | simprl | |- ( ( ph /\ ( l e. M /\ k e. N ) ) -> l e. M ) |
|
| 18 | simprr | |- ( ( ph /\ ( l e. M /\ k e. N ) ) -> k e. N ) |
|
| 19 | 8 1 10 11 12 12 13 15 16 17 18 | mamufv | |- ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( l ( I F X ) k ) = ( R gsum ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) ) ) |
| 20 | ringmnd | |- ( R e. Ring -> R e. Mnd ) |
|
| 21 | 11 20 | syl | |- ( ( ph /\ ( l e. M /\ k e. N ) ) -> R e. Mnd ) |
| 22 | 2 | ad2antrr | |- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> R e. Ring ) |
| 23 | elmapi | |- ( I e. ( B ^m ( M X. M ) ) -> I : ( M X. M ) --> B ) |
|
| 24 | 14 23 | syl | |- ( ph -> I : ( M X. M ) --> B ) |
| 25 | 24 | ad2antrr | |- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> I : ( M X. M ) --> B ) |
| 26 | simplrl | |- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> l e. M ) |
|
| 27 | simpr | |- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> m e. M ) |
|
| 28 | 25 26 27 | fovcdmd | |- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> ( l I m ) e. B ) |
| 29 | elmapi | |- ( X e. ( B ^m ( M X. N ) ) -> X : ( M X. N ) --> B ) |
|
| 30 | 9 29 | syl | |- ( ph -> X : ( M X. N ) --> B ) |
| 31 | 30 | ad2antrr | |- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> X : ( M X. N ) --> B ) |
| 32 | simplrr | |- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> k e. N ) |
|
| 33 | 31 27 32 | fovcdmd | |- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> ( m X k ) e. B ) |
| 34 | 1 10 | ringcl | |- ( ( R e. Ring /\ ( l I m ) e. B /\ ( m X k ) e. B ) -> ( ( l I m ) ( .r ` R ) ( m X k ) ) e. B ) |
| 35 | 22 28 33 34 | syl3anc | |- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> ( ( l I m ) ( .r ` R ) ( m X k ) ) e. B ) |
| 36 | 35 | fmpttd | |- ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) : M --> B ) |
| 37 | 26 | 3adant3 | |- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> l e. M ) |
| 38 | simp2 | |- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> m e. M ) |
|
| 39 | 1 2 3 4 5 6 | mat1comp | |- ( ( l e. M /\ m e. M ) -> ( l I m ) = if ( l = m , .1. , .0. ) ) |
| 40 | equcom | |- ( l = m <-> m = l ) |
|
| 41 | 40 | a1i | |- ( ( l e. M /\ m e. M ) -> ( l = m <-> m = l ) ) |
| 42 | 41 | ifbid | |- ( ( l e. M /\ m e. M ) -> if ( l = m , .1. , .0. ) = if ( m = l , .1. , .0. ) ) |
| 43 | 39 42 | eqtrd | |- ( ( l e. M /\ m e. M ) -> ( l I m ) = if ( m = l , .1. , .0. ) ) |
| 44 | 37 38 43 | syl2anc | |- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> ( l I m ) = if ( m = l , .1. , .0. ) ) |
| 45 | ifnefalse | |- ( m =/= l -> if ( m = l , .1. , .0. ) = .0. ) |
|
| 46 | 45 | 3ad2ant3 | |- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> if ( m = l , .1. , .0. ) = .0. ) |
| 47 | 44 46 | eqtrd | |- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> ( l I m ) = .0. ) |
| 48 | 47 | oveq1d | |- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> ( ( l I m ) ( .r ` R ) ( m X k ) ) = ( .0. ( .r ` R ) ( m X k ) ) ) |
| 49 | 1 10 4 | ringlz | |- ( ( R e. Ring /\ ( m X k ) e. B ) -> ( .0. ( .r ` R ) ( m X k ) ) = .0. ) |
| 50 | 22 33 49 | syl2anc | |- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> ( .0. ( .r ` R ) ( m X k ) ) = .0. ) |
| 51 | 50 | 3adant3 | |- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> ( .0. ( .r ` R ) ( m X k ) ) = .0. ) |
| 52 | 48 51 | eqtrd | |- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> ( ( l I m ) ( .r ` R ) ( m X k ) ) = .0. ) |
| 53 | 52 12 | suppsssn | |- ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) supp .0. ) C_ { l } ) |
| 54 | 1 4 21 12 17 36 53 | gsumpt | |- ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( R gsum ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) ) = ( ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) ` l ) ) |
| 55 | oveq2 | |- ( m = l -> ( l I m ) = ( l I l ) ) |
|
| 56 | oveq1 | |- ( m = l -> ( m X k ) = ( l X k ) ) |
|
| 57 | 55 56 | oveq12d | |- ( m = l -> ( ( l I m ) ( .r ` R ) ( m X k ) ) = ( ( l I l ) ( .r ` R ) ( l X k ) ) ) |
| 58 | eqid | |- ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) = ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) |
|
| 59 | ovex | |- ( ( l I l ) ( .r ` R ) ( l X k ) ) e. _V |
|
| 60 | 57 58 59 | fvmpt | |- ( l e. M -> ( ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) ` l ) = ( ( l I l ) ( .r ` R ) ( l X k ) ) ) |
| 61 | 60 | ad2antrl | |- ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) ` l ) = ( ( l I l ) ( .r ` R ) ( l X k ) ) ) |
| 62 | equequ1 | |- ( i = l -> ( i = j <-> l = j ) ) |
|
| 63 | 62 | ifbid | |- ( i = l -> if ( i = j , .1. , .0. ) = if ( l = j , .1. , .0. ) ) |
| 64 | equequ2 | |- ( j = l -> ( l = j <-> l = l ) ) |
|
| 65 | 64 | ifbid | |- ( j = l -> if ( l = j , .1. , .0. ) = if ( l = l , .1. , .0. ) ) |
| 66 | equid | |- l = l |
|
| 67 | 66 | iftruei | |- if ( l = l , .1. , .0. ) = .1. |
| 68 | 65 67 | eqtrdi | |- ( j = l -> if ( l = j , .1. , .0. ) = .1. ) |
| 69 | 3 | fvexi | |- .1. e. _V |
| 70 | 63 68 5 69 | ovmpo | |- ( ( l e. M /\ l e. M ) -> ( l I l ) = .1. ) |
| 71 | 70 | anidms | |- ( l e. M -> ( l I l ) = .1. ) |
| 72 | 71 | ad2antrl | |- ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( l I l ) = .1. ) |
| 73 | 72 | oveq1d | |- ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( ( l I l ) ( .r ` R ) ( l X k ) ) = ( .1. ( .r ` R ) ( l X k ) ) ) |
| 74 | 30 | fovcdmda | |- ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( l X k ) e. B ) |
| 75 | 1 10 3 | ringlidm | |- ( ( R e. Ring /\ ( l X k ) e. B ) -> ( .1. ( .r ` R ) ( l X k ) ) = ( l X k ) ) |
| 76 | 11 74 75 | syl2anc | |- ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( .1. ( .r ` R ) ( l X k ) ) = ( l X k ) ) |
| 77 | 61 73 76 | 3eqtrd | |- ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) ` l ) = ( l X k ) ) |
| 78 | 19 54 77 | 3eqtrd | |- ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( l ( I F X ) k ) = ( l X k ) ) |
| 79 | 78 | ralrimivva | |- ( ph -> A. l e. M A. k e. N ( l ( I F X ) k ) = ( l X k ) ) |
| 80 | 1 2 8 6 6 7 14 9 | mamucl | |- ( ph -> ( I F X ) e. ( B ^m ( M X. N ) ) ) |
| 81 | elmapi | |- ( ( I F X ) e. ( B ^m ( M X. N ) ) -> ( I F X ) : ( M X. N ) --> B ) |
|
| 82 | 80 81 | syl | |- ( ph -> ( I F X ) : ( M X. N ) --> B ) |
| 83 | 82 | ffnd | |- ( ph -> ( I F X ) Fn ( M X. N ) ) |
| 84 | 30 | ffnd | |- ( ph -> X Fn ( M X. N ) ) |
| 85 | eqfnov2 | |- ( ( ( I F X ) Fn ( M X. N ) /\ X Fn ( M X. N ) ) -> ( ( I F X ) = X <-> A. l e. M A. k e. N ( l ( I F X ) k ) = ( l X k ) ) ) |
|
| 86 | 83 84 85 | syl2anc | |- ( ph -> ( ( I F X ) = X <-> A. l e. M A. k e. N ( l ( I F X ) k ) = ( l X k ) ) ) |
| 87 | 79 86 | mpbird | |- ( ph -> ( I F X ) = X ) |