This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity matrix (as operation in maps-to notation) is a matrix. (Contributed by Stefan O'Rear, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mamumat1cl.b | |- B = ( Base ` R ) |
|
| mamumat1cl.r | |- ( ph -> R e. Ring ) |
||
| mamumat1cl.o | |- .1. = ( 1r ` R ) |
||
| mamumat1cl.z | |- .0. = ( 0g ` R ) |
||
| mamumat1cl.i | |- I = ( i e. M , j e. M |-> if ( i = j , .1. , .0. ) ) |
||
| mamumat1cl.m | |- ( ph -> M e. Fin ) |
||
| Assertion | mamumat1cl | |- ( ph -> I e. ( B ^m ( M X. M ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamumat1cl.b | |- B = ( Base ` R ) |
|
| 2 | mamumat1cl.r | |- ( ph -> R e. Ring ) |
|
| 3 | mamumat1cl.o | |- .1. = ( 1r ` R ) |
|
| 4 | mamumat1cl.z | |- .0. = ( 0g ` R ) |
|
| 5 | mamumat1cl.i | |- I = ( i e. M , j e. M |-> if ( i = j , .1. , .0. ) ) |
|
| 6 | mamumat1cl.m | |- ( ph -> M e. Fin ) |
|
| 7 | 1 3 | ringidcl | |- ( R e. Ring -> .1. e. B ) |
| 8 | 1 4 | ring0cl | |- ( R e. Ring -> .0. e. B ) |
| 9 | 7 8 | ifcld | |- ( R e. Ring -> if ( i = j , .1. , .0. ) e. B ) |
| 10 | 2 9 | syl | |- ( ph -> if ( i = j , .1. , .0. ) e. B ) |
| 11 | 10 | adantr | |- ( ( ph /\ ( i e. M /\ j e. M ) ) -> if ( i = j , .1. , .0. ) e. B ) |
| 12 | 11 | ralrimivva | |- ( ph -> A. i e. M A. j e. M if ( i = j , .1. , .0. ) e. B ) |
| 13 | 5 | fmpo | |- ( A. i e. M A. j e. M if ( i = j , .1. , .0. ) e. B <-> I : ( M X. M ) --> B ) |
| 14 | 12 13 | sylib | |- ( ph -> I : ( M X. M ) --> B ) |
| 15 | 1 | fvexi | |- B e. _V |
| 16 | xpfi | |- ( ( M e. Fin /\ M e. Fin ) -> ( M X. M ) e. Fin ) |
|
| 17 | 6 6 16 | syl2anc | |- ( ph -> ( M X. M ) e. Fin ) |
| 18 | elmapg | |- ( ( B e. _V /\ ( M X. M ) e. Fin ) -> ( I e. ( B ^m ( M X. M ) ) <-> I : ( M X. M ) --> B ) ) |
|
| 19 | 15 17 18 | sylancr | |- ( ph -> ( I e. ( B ^m ( M X. M ) ) <-> I : ( M X. M ) --> B ) ) |
| 20 | 14 19 | mpbird | |- ( ph -> I e. ( B ^m ( M X. M ) ) ) |