This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar multiplication in the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mat0dim.a | |- A = ( (/) Mat R ) |
|
| Assertion | mat0dimscm | |- ( ( R e. Ring /\ X e. ( Base ` R ) ) -> ( X ( .s ` A ) (/) ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat0dim.a | |- A = ( (/) Mat R ) |
|
| 2 | simpl | |- ( ( R e. Ring /\ X e. ( Base ` R ) ) -> R e. Ring ) |
|
| 3 | 0fi | |- (/) e. Fin |
|
| 4 | 1 | matlmod | |- ( ( (/) e. Fin /\ R e. Ring ) -> A e. LMod ) |
| 5 | 3 2 4 | sylancr | |- ( ( R e. Ring /\ X e. ( Base ` R ) ) -> A e. LMod ) |
| 6 | 1 | matsca2 | |- ( ( (/) e. Fin /\ R e. Ring ) -> R = ( Scalar ` A ) ) |
| 7 | 3 6 | mpan | |- ( R e. Ring -> R = ( Scalar ` A ) ) |
| 8 | 7 | fveq2d | |- ( R e. Ring -> ( Base ` R ) = ( Base ` ( Scalar ` A ) ) ) |
| 9 | 8 | eleq2d | |- ( R e. Ring -> ( X e. ( Base ` R ) <-> X e. ( Base ` ( Scalar ` A ) ) ) ) |
| 10 | 9 | biimpa | |- ( ( R e. Ring /\ X e. ( Base ` R ) ) -> X e. ( Base ` ( Scalar ` A ) ) ) |
| 11 | 0ex | |- (/) e. _V |
|
| 12 | 11 | snid | |- (/) e. { (/) } |
| 13 | 1 | fveq2i | |- ( Base ` A ) = ( Base ` ( (/) Mat R ) ) |
| 14 | mat0dimbas0 | |- ( R e. Ring -> ( Base ` ( (/) Mat R ) ) = { (/) } ) |
|
| 15 | 13 14 | eqtrid | |- ( R e. Ring -> ( Base ` A ) = { (/) } ) |
| 16 | 12 15 | eleqtrrid | |- ( R e. Ring -> (/) e. ( Base ` A ) ) |
| 17 | 16 | adantr | |- ( ( R e. Ring /\ X e. ( Base ` R ) ) -> (/) e. ( Base ` A ) ) |
| 18 | eqid | |- ( Base ` A ) = ( Base ` A ) |
|
| 19 | eqid | |- ( Scalar ` A ) = ( Scalar ` A ) |
|
| 20 | eqid | |- ( .s ` A ) = ( .s ` A ) |
|
| 21 | eqid | |- ( Base ` ( Scalar ` A ) ) = ( Base ` ( Scalar ` A ) ) |
|
| 22 | 18 19 20 21 | lmodvscl | |- ( ( A e. LMod /\ X e. ( Base ` ( Scalar ` A ) ) /\ (/) e. ( Base ` A ) ) -> ( X ( .s ` A ) (/) ) e. ( Base ` A ) ) |
| 23 | 5 10 17 22 | syl3anc | |- ( ( R e. Ring /\ X e. ( Base ` R ) ) -> ( X ( .s ` A ) (/) ) e. ( Base ` A ) ) |
| 24 | 15 | eleq2d | |- ( R e. Ring -> ( ( X ( .s ` A ) (/) ) e. ( Base ` A ) <-> ( X ( .s ` A ) (/) ) e. { (/) } ) ) |
| 25 | elsni | |- ( ( X ( .s ` A ) (/) ) e. { (/) } -> ( X ( .s ` A ) (/) ) = (/) ) |
|
| 26 | 24 25 | biimtrdi | |- ( R e. Ring -> ( ( X ( .s ` A ) (/) ) e. ( Base ` A ) -> ( X ( .s ` A ) (/) ) = (/) ) ) |
| 27 | 2 23 26 | sylc | |- ( ( R e. Ring /\ X e. ( Base ` R ) ) -> ( X ( .s ` A ) (/) ) = (/) ) |