This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar multiplication in the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mat0dim.a | ⊢ 𝐴 = ( ∅ Mat 𝑅 ) | |
| Assertion | mat0dimscm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝐴 ) ∅ ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat0dim.a | ⊢ 𝐴 = ( ∅ Mat 𝑅 ) | |
| 2 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) | |
| 3 | 0fi | ⊢ ∅ ∈ Fin | |
| 4 | 1 | matlmod | ⊢ ( ( ∅ ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ LMod ) |
| 5 | 3 2 4 | sylancr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → 𝐴 ∈ LMod ) |
| 6 | 1 | matsca2 | ⊢ ( ( ∅ ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 = ( Scalar ‘ 𝐴 ) ) |
| 7 | 3 6 | mpan | ⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝐴 ) ) |
| 8 | 7 | fveq2d | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 9 | 8 | eleq2d | ⊢ ( 𝑅 ∈ Ring → ( 𝑋 ∈ ( Base ‘ 𝑅 ) ↔ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 10 | 9 | biimpa | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 11 | 0ex | ⊢ ∅ ∈ V | |
| 12 | 11 | snid | ⊢ ∅ ∈ { ∅ } |
| 13 | 1 | fveq2i | ⊢ ( Base ‘ 𝐴 ) = ( Base ‘ ( ∅ Mat 𝑅 ) ) |
| 14 | mat0dimbas0 | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } ) | |
| 15 | 13 14 | eqtrid | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝐴 ) = { ∅ } ) |
| 16 | 12 15 | eleqtrrid | ⊢ ( 𝑅 ∈ Ring → ∅ ∈ ( Base ‘ 𝐴 ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ∅ ∈ ( Base ‘ 𝐴 ) ) |
| 18 | eqid | ⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) | |
| 19 | eqid | ⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) | |
| 20 | eqid | ⊢ ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) | |
| 21 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) | |
| 22 | 18 19 20 21 | lmodvscl | ⊢ ( ( 𝐴 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ ∅ ∈ ( Base ‘ 𝐴 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝐴 ) ∅ ) ∈ ( Base ‘ 𝐴 ) ) |
| 23 | 5 10 17 22 | syl3anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝐴 ) ∅ ) ∈ ( Base ‘ 𝐴 ) ) |
| 24 | 15 | eleq2d | ⊢ ( 𝑅 ∈ Ring → ( ( 𝑋 ( ·𝑠 ‘ 𝐴 ) ∅ ) ∈ ( Base ‘ 𝐴 ) ↔ ( 𝑋 ( ·𝑠 ‘ 𝐴 ) ∅ ) ∈ { ∅ } ) ) |
| 25 | elsni | ⊢ ( ( 𝑋 ( ·𝑠 ‘ 𝐴 ) ∅ ) ∈ { ∅ } → ( 𝑋 ( ·𝑠 ‘ 𝐴 ) ∅ ) = ∅ ) | |
| 26 | 24 25 | biimtrdi | ⊢ ( 𝑅 ∈ Ring → ( ( 𝑋 ( ·𝑠 ‘ 𝐴 ) ∅ ) ∈ ( Base ‘ 𝐴 ) → ( 𝑋 ( ·𝑠 ‘ 𝐴 ) ∅ ) = ∅ ) ) |
| 27 | 2 23 26 | sylc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝐴 ) ∅ ) = ∅ ) |