This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The algebra of matrices with dimension 0 (over an arbitrary ring!) is a commutative ring. (Contributed by AV, 10-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mat0dim.a | |- A = ( (/) Mat R ) |
|
| Assertion | mat0dimcrng | |- ( R e. Ring -> A e. CRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat0dim.a | |- A = ( (/) Mat R ) |
|
| 2 | 0fi | |- (/) e. Fin |
|
| 3 | 1 | matring | |- ( ( (/) e. Fin /\ R e. Ring ) -> A e. Ring ) |
| 4 | 2 3 | mpan | |- ( R e. Ring -> A e. Ring ) |
| 5 | mat0dimbas0 | |- ( R e. Ring -> ( Base ` ( (/) Mat R ) ) = { (/) } ) |
|
| 6 | 1 | eqcomi | |- ( (/) Mat R ) = A |
| 7 | 6 | fveq2i | |- ( Base ` ( (/) Mat R ) ) = ( Base ` A ) |
| 8 | 7 | eqeq1i | |- ( ( Base ` ( (/) Mat R ) ) = { (/) } <-> ( Base ` A ) = { (/) } ) |
| 9 | eqidd | |- ( ( ( Base ` A ) = { (/) } /\ R e. Ring ) -> ( (/) ( .r ` A ) (/) ) = ( (/) ( .r ` A ) (/) ) ) |
|
| 10 | 0ex | |- (/) e. _V |
|
| 11 | oveq1 | |- ( x = (/) -> ( x ( .r ` A ) y ) = ( (/) ( .r ` A ) y ) ) |
|
| 12 | oveq2 | |- ( x = (/) -> ( y ( .r ` A ) x ) = ( y ( .r ` A ) (/) ) ) |
|
| 13 | 11 12 | eqeq12d | |- ( x = (/) -> ( ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) <-> ( (/) ( .r ` A ) y ) = ( y ( .r ` A ) (/) ) ) ) |
| 14 | 13 | ralbidv | |- ( x = (/) -> ( A. y e. { (/) } ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) <-> A. y e. { (/) } ( (/) ( .r ` A ) y ) = ( y ( .r ` A ) (/) ) ) ) |
| 15 | 10 14 | ralsn | |- ( A. x e. { (/) } A. y e. { (/) } ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) <-> A. y e. { (/) } ( (/) ( .r ` A ) y ) = ( y ( .r ` A ) (/) ) ) |
| 16 | oveq2 | |- ( y = (/) -> ( (/) ( .r ` A ) y ) = ( (/) ( .r ` A ) (/) ) ) |
|
| 17 | oveq1 | |- ( y = (/) -> ( y ( .r ` A ) (/) ) = ( (/) ( .r ` A ) (/) ) ) |
|
| 18 | 16 17 | eqeq12d | |- ( y = (/) -> ( ( (/) ( .r ` A ) y ) = ( y ( .r ` A ) (/) ) <-> ( (/) ( .r ` A ) (/) ) = ( (/) ( .r ` A ) (/) ) ) ) |
| 19 | 10 18 | ralsn | |- ( A. y e. { (/) } ( (/) ( .r ` A ) y ) = ( y ( .r ` A ) (/) ) <-> ( (/) ( .r ` A ) (/) ) = ( (/) ( .r ` A ) (/) ) ) |
| 20 | 15 19 | bitri | |- ( A. x e. { (/) } A. y e. { (/) } ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) <-> ( (/) ( .r ` A ) (/) ) = ( (/) ( .r ` A ) (/) ) ) |
| 21 | 9 20 | sylibr | |- ( ( ( Base ` A ) = { (/) } /\ R e. Ring ) -> A. x e. { (/) } A. y e. { (/) } ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) |
| 22 | raleq | |- ( ( Base ` A ) = { (/) } -> ( A. y e. ( Base ` A ) ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) <-> A. y e. { (/) } ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) ) |
|
| 23 | 22 | raleqbi1dv | |- ( ( Base ` A ) = { (/) } -> ( A. x e. ( Base ` A ) A. y e. ( Base ` A ) ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) <-> A. x e. { (/) } A. y e. { (/) } ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) ) |
| 24 | 23 | adantr | |- ( ( ( Base ` A ) = { (/) } /\ R e. Ring ) -> ( A. x e. ( Base ` A ) A. y e. ( Base ` A ) ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) <-> A. x e. { (/) } A. y e. { (/) } ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) ) |
| 25 | 21 24 | mpbird | |- ( ( ( Base ` A ) = { (/) } /\ R e. Ring ) -> A. x e. ( Base ` A ) A. y e. ( Base ` A ) ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) |
| 26 | 25 | ex | |- ( ( Base ` A ) = { (/) } -> ( R e. Ring -> A. x e. ( Base ` A ) A. y e. ( Base ` A ) ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) ) |
| 27 | 8 26 | sylbi | |- ( ( Base ` ( (/) Mat R ) ) = { (/) } -> ( R e. Ring -> A. x e. ( Base ` A ) A. y e. ( Base ` A ) ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) ) |
| 28 | 5 27 | mpcom | |- ( R e. Ring -> A. x e. ( Base ` A ) A. y e. ( Base ` A ) ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) |
| 29 | eqid | |- ( Base ` A ) = ( Base ` A ) |
|
| 30 | eqid | |- ( .r ` A ) = ( .r ` A ) |
|
| 31 | 29 30 | iscrng2 | |- ( A e. CRing <-> ( A e. Ring /\ A. x e. ( Base ` A ) A. y e. ( Base ` A ) ( x ( .r ` A ) y ) = ( y ( .r ` A ) x ) ) ) |
| 32 | 4 28 31 | sylanbrc | |- ( R e. Ring -> A e. CRing ) |