This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is dominated by its Cartesian product with a nonempty set. Exercise 6 of Suppes p. 98. (Contributed by NM, 27-Jul-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpdom3 | |- ( ( A e. V /\ B e. W /\ B =/= (/) ) -> A ~<_ ( A X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | |- ( B =/= (/) <-> E. x x e. B ) |
|
| 2 | xpsneng | |- ( ( A e. V /\ x e. B ) -> ( A X. { x } ) ~~ A ) |
|
| 3 | 2 | 3adant2 | |- ( ( A e. V /\ B e. W /\ x e. B ) -> ( A X. { x } ) ~~ A ) |
| 4 | 3 | ensymd | |- ( ( A e. V /\ B e. W /\ x e. B ) -> A ~~ ( A X. { x } ) ) |
| 5 | xpexg | |- ( ( A e. V /\ B e. W ) -> ( A X. B ) e. _V ) |
|
| 6 | 5 | 3adant3 | |- ( ( A e. V /\ B e. W /\ x e. B ) -> ( A X. B ) e. _V ) |
| 7 | simp3 | |- ( ( A e. V /\ B e. W /\ x e. B ) -> x e. B ) |
|
| 8 | 7 | snssd | |- ( ( A e. V /\ B e. W /\ x e. B ) -> { x } C_ B ) |
| 9 | xpss2 | |- ( { x } C_ B -> ( A X. { x } ) C_ ( A X. B ) ) |
|
| 10 | 8 9 | syl | |- ( ( A e. V /\ B e. W /\ x e. B ) -> ( A X. { x } ) C_ ( A X. B ) ) |
| 11 | ssdomg | |- ( ( A X. B ) e. _V -> ( ( A X. { x } ) C_ ( A X. B ) -> ( A X. { x } ) ~<_ ( A X. B ) ) ) |
|
| 12 | 6 10 11 | sylc | |- ( ( A e. V /\ B e. W /\ x e. B ) -> ( A X. { x } ) ~<_ ( A X. B ) ) |
| 13 | endomtr | |- ( ( A ~~ ( A X. { x } ) /\ ( A X. { x } ) ~<_ ( A X. B ) ) -> A ~<_ ( A X. B ) ) |
|
| 14 | 4 12 13 | syl2anc | |- ( ( A e. V /\ B e. W /\ x e. B ) -> A ~<_ ( A X. B ) ) |
| 15 | 14 | 3expia | |- ( ( A e. V /\ B e. W ) -> ( x e. B -> A ~<_ ( A X. B ) ) ) |
| 16 | 15 | exlimdv | |- ( ( A e. V /\ B e. W ) -> ( E. x x e. B -> A ~<_ ( A X. B ) ) ) |
| 17 | 1 16 | biimtrid | |- ( ( A e. V /\ B e. W ) -> ( B =/= (/) -> A ~<_ ( A X. B ) ) ) |
| 18 | 17 | 3impia | |- ( ( A e. V /\ B e. W /\ B =/= (/) ) -> A ~<_ ( A X. B ) ) |