This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of Suppes p. 89. (Contributed by NM, 10-Dec-2003) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | map0b | |- ( A =/= (/) -> ( (/) ^m A ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi | |- ( f e. ( (/) ^m A ) -> f : A --> (/) ) |
|
| 2 | fdm | |- ( f : A --> (/) -> dom f = A ) |
|
| 3 | frn | |- ( f : A --> (/) -> ran f C_ (/) ) |
|
| 4 | ss0 | |- ( ran f C_ (/) -> ran f = (/) ) |
|
| 5 | 3 4 | syl | |- ( f : A --> (/) -> ran f = (/) ) |
| 6 | dm0rn0 | |- ( dom f = (/) <-> ran f = (/) ) |
|
| 7 | 5 6 | sylibr | |- ( f : A --> (/) -> dom f = (/) ) |
| 8 | 2 7 | eqtr3d | |- ( f : A --> (/) -> A = (/) ) |
| 9 | 1 8 | syl | |- ( f e. ( (/) ^m A ) -> A = (/) ) |
| 10 | 9 | necon3ai | |- ( A =/= (/) -> -. f e. ( (/) ^m A ) ) |
| 11 | 10 | eq0rdv | |- ( A =/= (/) -> ( (/) ^m A ) = (/) ) |