This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of Suppes p. 89. (Contributed by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | map0g | |- ( ( A e. V /\ B e. W ) -> ( ( A ^m B ) = (/) <-> ( A = (/) /\ B =/= (/) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | |- ( A =/= (/) <-> E. f f e. A ) |
|
| 2 | fconst6g | |- ( f e. A -> ( B X. { f } ) : B --> A ) |
|
| 3 | elmapg | |- ( ( A e. V /\ B e. W ) -> ( ( B X. { f } ) e. ( A ^m B ) <-> ( B X. { f } ) : B --> A ) ) |
|
| 4 | 2 3 | imbitrrid | |- ( ( A e. V /\ B e. W ) -> ( f e. A -> ( B X. { f } ) e. ( A ^m B ) ) ) |
| 5 | ne0i | |- ( ( B X. { f } ) e. ( A ^m B ) -> ( A ^m B ) =/= (/) ) |
|
| 6 | 4 5 | syl6 | |- ( ( A e. V /\ B e. W ) -> ( f e. A -> ( A ^m B ) =/= (/) ) ) |
| 7 | 6 | exlimdv | |- ( ( A e. V /\ B e. W ) -> ( E. f f e. A -> ( A ^m B ) =/= (/) ) ) |
| 8 | 1 7 | biimtrid | |- ( ( A e. V /\ B e. W ) -> ( A =/= (/) -> ( A ^m B ) =/= (/) ) ) |
| 9 | 8 | necon4d | |- ( ( A e. V /\ B e. W ) -> ( ( A ^m B ) = (/) -> A = (/) ) ) |
| 10 | f0 | |- (/) : (/) --> A |
|
| 11 | feq2 | |- ( B = (/) -> ( (/) : B --> A <-> (/) : (/) --> A ) ) |
|
| 12 | 10 11 | mpbiri | |- ( B = (/) -> (/) : B --> A ) |
| 13 | elmapg | |- ( ( A e. V /\ B e. W ) -> ( (/) e. ( A ^m B ) <-> (/) : B --> A ) ) |
|
| 14 | 12 13 | imbitrrid | |- ( ( A e. V /\ B e. W ) -> ( B = (/) -> (/) e. ( A ^m B ) ) ) |
| 15 | ne0i | |- ( (/) e. ( A ^m B ) -> ( A ^m B ) =/= (/) ) |
|
| 16 | 14 15 | syl6 | |- ( ( A e. V /\ B e. W ) -> ( B = (/) -> ( A ^m B ) =/= (/) ) ) |
| 17 | 16 | necon2d | |- ( ( A e. V /\ B e. W ) -> ( ( A ^m B ) = (/) -> B =/= (/) ) ) |
| 18 | 9 17 | jcad | |- ( ( A e. V /\ B e. W ) -> ( ( A ^m B ) = (/) -> ( A = (/) /\ B =/= (/) ) ) ) |
| 19 | oveq1 | |- ( A = (/) -> ( A ^m B ) = ( (/) ^m B ) ) |
|
| 20 | map0b | |- ( B =/= (/) -> ( (/) ^m B ) = (/) ) |
|
| 21 | 19 20 | sylan9eq | |- ( ( A = (/) /\ B =/= (/) ) -> ( A ^m B ) = (/) ) |
| 22 | 18 21 | impbid1 | |- ( ( A e. V /\ B e. W ) -> ( ( A ^m B ) = (/) <-> ( A = (/) /\ B =/= (/) ) ) ) |