This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each entry of a matrix with an index as permutation of the other is an element of the underlying ring. (Contributed by AV, 1-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matepmcl.a | |- A = ( N Mat R ) |
|
| matepmcl.b | |- B = ( Base ` A ) |
||
| matepmcl.p | |- P = ( Base ` ( SymGrp ` N ) ) |
||
| Assertion | matepmcl | |- ( ( R e. Ring /\ Q e. P /\ M e. B ) -> A. n e. N ( ( Q ` n ) M n ) e. ( Base ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matepmcl.a | |- A = ( N Mat R ) |
|
| 2 | matepmcl.b | |- B = ( Base ` A ) |
|
| 3 | matepmcl.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 4 | eqid | |- ( SymGrp ` N ) = ( SymGrp ` N ) |
|
| 5 | 4 3 | symgfv | |- ( ( Q e. P /\ n e. N ) -> ( Q ` n ) e. N ) |
| 6 | 5 | 3ad2antl2 | |- ( ( ( R e. Ring /\ Q e. P /\ M e. B ) /\ n e. N ) -> ( Q ` n ) e. N ) |
| 7 | simpr | |- ( ( ( R e. Ring /\ Q e. P /\ M e. B ) /\ n e. N ) -> n e. N ) |
|
| 8 | 2 | eleq2i | |- ( M e. B <-> M e. ( Base ` A ) ) |
| 9 | 8 | biimpi | |- ( M e. B -> M e. ( Base ` A ) ) |
| 10 | 9 | 3ad2ant3 | |- ( ( R e. Ring /\ Q e. P /\ M e. B ) -> M e. ( Base ` A ) ) |
| 11 | 10 | adantr | |- ( ( ( R e. Ring /\ Q e. P /\ M e. B ) /\ n e. N ) -> M e. ( Base ` A ) ) |
| 12 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 13 | 1 12 | matecl | |- ( ( ( Q ` n ) e. N /\ n e. N /\ M e. ( Base ` A ) ) -> ( ( Q ` n ) M n ) e. ( Base ` R ) ) |
| 14 | 6 7 11 13 | syl3anc | |- ( ( ( R e. Ring /\ Q e. P /\ M e. B ) /\ n e. N ) -> ( ( Q ` n ) M n ) e. ( Base ` R ) ) |
| 15 | 14 | ralrimiva | |- ( ( R e. Ring /\ Q e. P /\ M e. B ) -> A. n e. N ( ( Q ` n ) M n ) e. ( Base ` R ) ) |