This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a group sum over the diagonal coefficients of a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018) (Proof shortened by AV, 23-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | madetsumid.a | |- A = ( N Mat R ) |
|
| madetsumid.b | |- B = ( Base ` A ) |
||
| madetsumid.u | |- U = ( mulGrp ` R ) |
||
| Assertion | matgsumcl | |- ( ( R e. CRing /\ M e. B ) -> ( U gsum ( r e. N |-> ( r M r ) ) ) e. ( Base ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | madetsumid.a | |- A = ( N Mat R ) |
|
| 2 | madetsumid.b | |- B = ( Base ` A ) |
|
| 3 | madetsumid.u | |- U = ( mulGrp ` R ) |
|
| 4 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 5 | 3 4 | mgpbas | |- ( Base ` R ) = ( Base ` U ) |
| 6 | 3 | crngmgp | |- ( R e. CRing -> U e. CMnd ) |
| 7 | 6 | adantr | |- ( ( R e. CRing /\ M e. B ) -> U e. CMnd ) |
| 8 | 1 2 | matrcl | |- ( M e. B -> ( N e. Fin /\ R e. _V ) ) |
| 9 | 8 | adantl | |- ( ( R e. CRing /\ M e. B ) -> ( N e. Fin /\ R e. _V ) ) |
| 10 | 9 | simpld | |- ( ( R e. CRing /\ M e. B ) -> N e. Fin ) |
| 11 | simpr | |- ( ( R e. CRing /\ M e. B ) -> M e. B ) |
|
| 12 | 1 4 2 | matbas2i | |- ( M e. B -> M e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 13 | elmapi | |- ( M e. ( ( Base ` R ) ^m ( N X. N ) ) -> M : ( N X. N ) --> ( Base ` R ) ) |
|
| 14 | 11 12 13 | 3syl | |- ( ( R e. CRing /\ M e. B ) -> M : ( N X. N ) --> ( Base ` R ) ) |
| 15 | 14 | adantr | |- ( ( ( R e. CRing /\ M e. B ) /\ r e. N ) -> M : ( N X. N ) --> ( Base ` R ) ) |
| 16 | simpr | |- ( ( ( R e. CRing /\ M e. B ) /\ r e. N ) -> r e. N ) |
|
| 17 | 15 16 16 | fovcdmd | |- ( ( ( R e. CRing /\ M e. B ) /\ r e. N ) -> ( r M r ) e. ( Base ` R ) ) |
| 18 | 17 | ralrimiva | |- ( ( R e. CRing /\ M e. B ) -> A. r e. N ( r M r ) e. ( Base ` R ) ) |
| 19 | 5 7 10 18 | gsummptcl | |- ( ( R e. CRing /\ M e. B ) -> ( U gsum ( r e. N |-> ( r M r ) ) ) e. ( Base ` R ) ) |