This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvmulcan | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. ~H /\ C e. ~H ) -> ( ( A .h B ) = ( A .h C ) <-> B = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne | |- ( A =/= 0 <-> -. A = 0 ) |
|
| 2 | biorf | |- ( -. A = 0 -> ( ( B -h C ) = 0h <-> ( A = 0 \/ ( B -h C ) = 0h ) ) ) |
|
| 3 | 1 2 | sylbi | |- ( A =/= 0 -> ( ( B -h C ) = 0h <-> ( A = 0 \/ ( B -h C ) = 0h ) ) ) |
| 4 | 3 | ad2antlr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. ~H ) -> ( ( B -h C ) = 0h <-> ( A = 0 \/ ( B -h C ) = 0h ) ) ) |
| 5 | 4 | 3adant3 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. ~H /\ C e. ~H ) -> ( ( B -h C ) = 0h <-> ( A = 0 \/ ( B -h C ) = 0h ) ) ) |
| 6 | hvsubeq0 | |- ( ( B e. ~H /\ C e. ~H ) -> ( ( B -h C ) = 0h <-> B = C ) ) |
|
| 7 | 6 | 3adant1 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. ~H /\ C e. ~H ) -> ( ( B -h C ) = 0h <-> B = C ) ) |
| 8 | hvsubdistr1 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( A .h ( B -h C ) ) = ( ( A .h B ) -h ( A .h C ) ) ) |
|
| 9 | 8 | eqeq1d | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( A .h ( B -h C ) ) = 0h <-> ( ( A .h B ) -h ( A .h C ) ) = 0h ) ) |
| 10 | hvsubcl | |- ( ( B e. ~H /\ C e. ~H ) -> ( B -h C ) e. ~H ) |
|
| 11 | hvmul0or | |- ( ( A e. CC /\ ( B -h C ) e. ~H ) -> ( ( A .h ( B -h C ) ) = 0h <-> ( A = 0 \/ ( B -h C ) = 0h ) ) ) |
|
| 12 | 10 11 | sylan2 | |- ( ( A e. CC /\ ( B e. ~H /\ C e. ~H ) ) -> ( ( A .h ( B -h C ) ) = 0h <-> ( A = 0 \/ ( B -h C ) = 0h ) ) ) |
| 13 | 12 | 3impb | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( A .h ( B -h C ) ) = 0h <-> ( A = 0 \/ ( B -h C ) = 0h ) ) ) |
| 14 | hvmulcl | |- ( ( A e. CC /\ B e. ~H ) -> ( A .h B ) e. ~H ) |
|
| 15 | 14 | 3adant3 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( A .h B ) e. ~H ) |
| 16 | hvmulcl | |- ( ( A e. CC /\ C e. ~H ) -> ( A .h C ) e. ~H ) |
|
| 17 | 16 | 3adant2 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( A .h C ) e. ~H ) |
| 18 | hvsubeq0 | |- ( ( ( A .h B ) e. ~H /\ ( A .h C ) e. ~H ) -> ( ( ( A .h B ) -h ( A .h C ) ) = 0h <-> ( A .h B ) = ( A .h C ) ) ) |
|
| 19 | 15 17 18 | syl2anc | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( ( A .h B ) -h ( A .h C ) ) = 0h <-> ( A .h B ) = ( A .h C ) ) ) |
| 20 | 9 13 19 | 3bitr3d | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( A = 0 \/ ( B -h C ) = 0h ) <-> ( A .h B ) = ( A .h C ) ) ) |
| 21 | 20 | 3adant1r | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. ~H /\ C e. ~H ) -> ( ( A = 0 \/ ( B -h C ) = 0h ) <-> ( A .h B ) = ( A .h C ) ) ) |
| 22 | 5 7 21 | 3bitr3rd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. ~H /\ C e. ~H ) -> ( ( A .h B ) = ( A .h C ) <-> B = C ) ) |