This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of the multiplicative inverse in a division ring. ( recid analog). (Contributed by NM, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drnginvrl.b | |- B = ( Base ` R ) |
|
| drnginvrl.z | |- .0. = ( 0g ` R ) |
||
| drnginvrl.t | |- .x. = ( .r ` R ) |
||
| drnginvrl.u | |- .1. = ( 1r ` R ) |
||
| drnginvrl.i | |- I = ( invr ` R ) |
||
| Assertion | drnginvrr | |- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( X .x. ( I ` X ) ) = .1. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drnginvrl.b | |- B = ( Base ` R ) |
|
| 2 | drnginvrl.z | |- .0. = ( 0g ` R ) |
|
| 3 | drnginvrl.t | |- .x. = ( .r ` R ) |
|
| 4 | drnginvrl.u | |- .1. = ( 1r ` R ) |
|
| 5 | drnginvrl.i | |- I = ( invr ` R ) |
|
| 6 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 7 | 1 6 2 | drngunit | |- ( R e. DivRing -> ( X e. ( Unit ` R ) <-> ( X e. B /\ X =/= .0. ) ) ) |
| 8 | drngring | |- ( R e. DivRing -> R e. Ring ) |
|
| 9 | 6 5 3 4 | unitrinv | |- ( ( R e. Ring /\ X e. ( Unit ` R ) ) -> ( X .x. ( I ` X ) ) = .1. ) |
| 10 | 9 | ex | |- ( R e. Ring -> ( X e. ( Unit ` R ) -> ( X .x. ( I ` X ) ) = .1. ) ) |
| 11 | 8 10 | syl | |- ( R e. DivRing -> ( X e. ( Unit ` R ) -> ( X .x. ( I ` X ) ) = .1. ) ) |
| 12 | 7 11 | sylbird | |- ( R e. DivRing -> ( ( X e. B /\ X =/= .0. ) -> ( X .x. ( I ` X ) ) = .1. ) ) |
| 13 | 12 | 3impib | |- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( X .x. ( I ` X ) ) = .1. ) |