This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Unequal spans are disjoint (share only the zero vector). (Contributed by NM, 22-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspdisj2.v | |- V = ( Base ` W ) |
|
| lspdisj2.o | |- .0. = ( 0g ` W ) |
||
| lspdisj2.n | |- N = ( LSpan ` W ) |
||
| lspdisj2.w | |- ( ph -> W e. LVec ) |
||
| lspdisj2.x | |- ( ph -> X e. V ) |
||
| lspdisj2.y | |- ( ph -> Y e. V ) |
||
| lspdisj2.q | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
||
| Assertion | lspdisj2 | |- ( ph -> ( ( N ` { X } ) i^i ( N ` { Y } ) ) = { .0. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspdisj2.v | |- V = ( Base ` W ) |
|
| 2 | lspdisj2.o | |- .0. = ( 0g ` W ) |
|
| 3 | lspdisj2.n | |- N = ( LSpan ` W ) |
|
| 4 | lspdisj2.w | |- ( ph -> W e. LVec ) |
|
| 5 | lspdisj2.x | |- ( ph -> X e. V ) |
|
| 6 | lspdisj2.y | |- ( ph -> Y e. V ) |
|
| 7 | lspdisj2.q | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
|
| 8 | sneq | |- ( X = .0. -> { X } = { .0. } ) |
|
| 9 | 8 | fveq2d | |- ( X = .0. -> ( N ` { X } ) = ( N ` { .0. } ) ) |
| 10 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 11 | 4 10 | syl | |- ( ph -> W e. LMod ) |
| 12 | 2 3 | lspsn0 | |- ( W e. LMod -> ( N ` { .0. } ) = { .0. } ) |
| 13 | 11 12 | syl | |- ( ph -> ( N ` { .0. } ) = { .0. } ) |
| 14 | 9 13 | sylan9eqr | |- ( ( ph /\ X = .0. ) -> ( N ` { X } ) = { .0. } ) |
| 15 | 14 | ineq1d | |- ( ( ph /\ X = .0. ) -> ( ( N ` { X } ) i^i ( N ` { Y } ) ) = ( { .0. } i^i ( N ` { Y } ) ) ) |
| 16 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 17 | 1 16 3 | lspsncl | |- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 18 | 11 6 17 | syl2anc | |- ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 19 | 2 16 | lss0ss | |- ( ( W e. LMod /\ ( N ` { Y } ) e. ( LSubSp ` W ) ) -> { .0. } C_ ( N ` { Y } ) ) |
| 20 | 11 18 19 | syl2anc | |- ( ph -> { .0. } C_ ( N ` { Y } ) ) |
| 21 | dfss2 | |- ( { .0. } C_ ( N ` { Y } ) <-> ( { .0. } i^i ( N ` { Y } ) ) = { .0. } ) |
|
| 22 | 20 21 | sylib | |- ( ph -> ( { .0. } i^i ( N ` { Y } ) ) = { .0. } ) |
| 23 | 22 | adantr | |- ( ( ph /\ X = .0. ) -> ( { .0. } i^i ( N ` { Y } ) ) = { .0. } ) |
| 24 | 15 23 | eqtrd | |- ( ( ph /\ X = .0. ) -> ( ( N ` { X } ) i^i ( N ` { Y } ) ) = { .0. } ) |
| 25 | 4 | adantr | |- ( ( ph /\ X =/= .0. ) -> W e. LVec ) |
| 26 | 18 | adantr | |- ( ( ph /\ X =/= .0. ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 27 | 5 | adantr | |- ( ( ph /\ X =/= .0. ) -> X e. V ) |
| 28 | 7 | adantr | |- ( ( ph /\ X =/= .0. ) -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
| 29 | 25 | adantr | |- ( ( ( ph /\ X =/= .0. ) /\ X e. ( N ` { Y } ) ) -> W e. LVec ) |
| 30 | 6 | adantr | |- ( ( ph /\ X =/= .0. ) -> Y e. V ) |
| 31 | 30 | adantr | |- ( ( ( ph /\ X =/= .0. ) /\ X e. ( N ` { Y } ) ) -> Y e. V ) |
| 32 | simpr | |- ( ( ( ph /\ X =/= .0. ) /\ X e. ( N ` { Y } ) ) -> X e. ( N ` { Y } ) ) |
|
| 33 | simplr | |- ( ( ( ph /\ X =/= .0. ) /\ X e. ( N ` { Y } ) ) -> X =/= .0. ) |
|
| 34 | 1 2 3 29 31 32 33 | lspsneleq | |- ( ( ( ph /\ X =/= .0. ) /\ X e. ( N ` { Y } ) ) -> ( N ` { X } ) = ( N ` { Y } ) ) |
| 35 | 34 | ex | |- ( ( ph /\ X =/= .0. ) -> ( X e. ( N ` { Y } ) -> ( N ` { X } ) = ( N ` { Y } ) ) ) |
| 36 | 35 | necon3ad | |- ( ( ph /\ X =/= .0. ) -> ( ( N ` { X } ) =/= ( N ` { Y } ) -> -. X e. ( N ` { Y } ) ) ) |
| 37 | 28 36 | mpd | |- ( ( ph /\ X =/= .0. ) -> -. X e. ( N ` { Y } ) ) |
| 38 | 1 2 3 16 25 26 27 37 | lspdisj | |- ( ( ph /\ X =/= .0. ) -> ( ( N ` { X } ) i^i ( N ` { Y } ) ) = { .0. } ) |
| 39 | 24 38 | pm2.61dane | |- ( ph -> ( ( N ` { X } ) i^i ( N ` { Y } ) ) = { .0. } ) |