This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Unequal singleton spans imply nonzero vector subtraction. (Contributed by NM, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnsubn0.v | |- V = ( Base ` W ) |
|
| lspsnsubn0.o | |- .0. = ( 0g ` W ) |
||
| lspsnsubn0.m | |- .- = ( -g ` W ) |
||
| lspsnsubn0.w | |- ( ph -> W e. LMod ) |
||
| lspsnsubn0.x | |- ( ph -> X e. V ) |
||
| lspsnsubn0.y | |- ( ph -> Y e. V ) |
||
| lspsnsubn0.e | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
||
| Assertion | lspsnsubn0 | |- ( ph -> ( X .- Y ) =/= .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnsubn0.v | |- V = ( Base ` W ) |
|
| 2 | lspsnsubn0.o | |- .0. = ( 0g ` W ) |
|
| 3 | lspsnsubn0.m | |- .- = ( -g ` W ) |
|
| 4 | lspsnsubn0.w | |- ( ph -> W e. LMod ) |
|
| 5 | lspsnsubn0.x | |- ( ph -> X e. V ) |
|
| 6 | lspsnsubn0.y | |- ( ph -> Y e. V ) |
|
| 7 | lspsnsubn0.e | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
|
| 8 | 1 2 3 | lmodsubeq0 | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( ( X .- Y ) = .0. <-> X = Y ) ) |
| 9 | 4 5 6 8 | syl3anc | |- ( ph -> ( ( X .- Y ) = .0. <-> X = Y ) ) |
| 10 | sneq | |- ( X = Y -> { X } = { Y } ) |
|
| 11 | 10 | fveq2d | |- ( X = Y -> ( N ` { X } ) = ( N ` { Y } ) ) |
| 12 | 9 11 | biimtrdi | |- ( ph -> ( ( X .- Y ) = .0. -> ( N ` { X } ) = ( N ` { Y } ) ) ) |
| 13 | 12 | necon3d | |- ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) -> ( X .- Y ) =/= .0. ) ) |
| 14 | 7 13 | mpd | |- ( ph -> ( X .- Y ) =/= .0. ) |